The Antioxidant activity of plant secondary metabolites

  • Mirjana Marčetić University of Belgrade – Faculty of Pharmacy, Department of Pharmacognosy
  • Jelena Arsenijević University of Belgrade – Faculty of Pharmacy, Department of Pharmacognosy
Keywords: antioxidant activity, polyphenols, herbal drugs


Oxidative stress can induce the development of many different disorders. Plant secondary metabolites may act as antioxidants by neutralisation of free radicals and by stimulation of endogenous antioxidant mechanisms. One of the important secondary plant metabolites with antioxidant activity are polyphenols. They can exert activity by different mechanisms depending on their structure. Polyphenols are widely distributed in herbal drugs and some of commonly used are aronia berry (Aroniae fructus) and bilberry fruits (Myrtilli fructus), both rich in anthocyanins and tannins and with high antioxidant activity. Main compounds in turmeric rhizome (Curcumae rhizome) are curcuminoides that manifest antioxidant and anti-inflammatory activity. Furthermore, tea leaf (Camelliae sinensis folium) and coffee bean (Coffeae semen), highly present in every-day life, significantly contribute to daily intake of antioxidants and provide necessary protection of the organism from the consequences of oxidative stress.


1.      Halliwell B, Gutteridge JMC. Free radicals in biology and medicine, 5th ed., Oxford: Oxford University Press; 2015.

2.      Lourenço SC, Moldão-Martins M, Alves VD. Antioxidants of Natural Plant Origins: From Sources to Food Industry Applications. Molecules 2019;24:4132.

3.      Simić A, Manojlović D, Šegan D, Todorović M. Electrochemical Behavior and Antioxidant and Prooxidant Activity of Natural Phenolics. Molecules 2007;12: 2327-2340.

4.      Ajiboye TO, Habibu RS, Saidu K, Haliru FZ, Ajiboye HO, Aliyu NO et al. Involvement of oxidative stress in protocatechuic acid-mediated bacterial lethality. Microbiology Open. 2017;e472.

5.      Kohanski MA, Dwyer DJ, Hayete B, Lawrence CA, Collins JJ. A Common Mechanism of Cellular Death Induced by Bactericidal Antibiotics. Cell 2007;130: 797–810.

6.      Augusti PR, Conterato GMM, Denardin CC, Prazeres ID, Serra AT, Bronze MR, Emanuelli T. Bioactivity, bioavailability, and gut microbiota transformations of dietary phenolic compounds: implications for COVID-19. J Nutr Biochem. 2021; 97: 108787.

7.      Zhang S, Gai Z, Gui T, Chen J, Chen Q, Li Y. Antioxidant Effects of Protocatechuic Acid and Protocatechuic Aldehyde: Old Wine in a New Bottle. Evid Based Complement Alternat Med 2021; 6139308;

8.      Acosta-Otálvaro E, Domínguez-Perles R, Mazo-Rivas JC, García-Viguera C. Bioavailability and radical scavenging power of phenolic compounds of cocoa and coffee mixtures. Food Sci Technol Int.;

9.      Gebicki JM, Nauser T. Fast Antioxidant Reaction of Polyphenols and Their Metabolites. Antioxidants 2021; 10: 1297.

10.  Jovanovic SV, Steenken S, Hara Y, Simic MG. Reduction potentials of flavonoid and model phenoxyl radicals. Which ring in flavonoids is responsible for antioxidant activity? J. Chem. Soc., Perkin Trans. 2 1996;11: 2497-2504.

11.  Sidor A, Gramza-Michałowska A. Black Chokeberry Aronia melanocarpa L.—A Qualitative Composition, Phenolic Profile and Antioxidant Potential. Molecules 2019; 24: 3710.

12.  Olas B. Berry Phenolic Antioxidants –Implications for Human Health? Front. Pharmacol. 2018; 9:78.

13.  Bushmeleva K , Vyshtakalyuk A, Terenzhev D, Belov T, Parfenov A , Sharonova N et al. Radical Scavenging Actions and Immunomodulatory Activity of Aronia melanocarpa Propylene Glycol Extracts. Plants 2021; 10: 2458.

14.  Denev PN, Kratchanov CG, Ciz M, Lojek A, Kratchanova MG. Bioavailability and Antioxidant Activity of Black Chokeberry (Aronia melanocarpa) Polyphenols: in vitro and in vivo Evidences and Possible Mechanisms of Action: A Review. Compr Rev Food Sci Food Saf. 2012;11:

15.  Bakuradze T, Becker D, Reischmann J, Meiser P, Galan J, Richling E. Protection from DNA Damage by Use of an Aronia Food Supplement—Results from a Pilot Human Intervention Study. Curr Pharmacol Rep 2019; 5:188–195.

16.  Jurikova T, Mlcek J, Skrovankova S, Sumczynski D, Sochor J, Hlavacova I et al. Fruits of Black Chokeberry Aronia melanocarpa in the Prevention of Chronic Diseases. Molecules 2017; 22: 944.

17.  Li Y, Tsopmejio ISN, Diao Z, Xiao H, Wang X, Jin Z et al. Aronia melanocarpa (Michx.) Elliott. attenuates dextran sulfate sodium-induced Inflammatory Bowel Disease via regulation of inflammation-related signaling pathways and modulation of the gut microbiota. J Ethnopharmacol. 2022; 292: 115190.

18.  Kasprzak-Drozd K, Oniszczuk T, Soja J, Gancarz M, Wojtunik-Kulesza K, Markut-Miotła E et al. The Efficacy of Black Chokeberry Fruits against Cardiovascular Diseases. Int. J. Mol.Sci. 2021; 22: 6541.

19.  Platonova EY, Shaposhnikov MV, Lee HY, Lee JH, Min KJ, Moskalev A. Black chokeberry (Aronia melanocarpa) extracts in terms of geroprotector criteria. Trends Food Sci Technol. 2021;114: 570–584.

20.  Suresh S , Begum RF , Singh SA , Chitra V. Anthocyanin as a therapeutic in Alzheimer’s disease: A systematic review of preclinical evidences. Ageing Res Rev. 2022; 76: 101595.

21.  Blejan AM, Nour V, Păcularu-Burada B, Popescu SM. Wild bilberry, blackcurrant, and blackberry by-products as a source of nutritional and bioactive compounds, Int J Food Prop. 2023: 26(1): 1579-1595.

22.  Vega EN, García-Herrera P, Ciudad-Mulero M, Dias MI, Matallana-González MC, Cámara M. Wild sweet cherry, strawberry and bilberry as underestimated sources of natural colorants and bioactive compounds with functional properties. Food Chem 2023; 414: 135669.

23.  European Pharmacopoeia. 10th ed, Strasbourg: Council of Europe, 2019.

24.  European Medicines Agency. EMA/HMPC/555161/2013. Assessment report on Vaccinium myrtillus L., fructus recens and Vaccinium myrtillus L., fructus siccus.  London: 29 September 2015.

25.  European Medicines Agency. EMA/HMPC/375808/2014. European Union herbal monograph on Vaccinium myrtillus L., fructus recens. London: 29 September 2015.

26.  European Medicines Agency. EMA/HMPC/678995/2013. European Union herbal monograph on Vaccinium myrtillus L., fructus siccus. London: 29 September 2015.

27.  Smeriglio A, Davide B, Laganà G, Bellocco E, Trombetta D. Bilberry (Vaccinium myrtyllus L.). In: Nabavi SM, Sanches A, editors. Nonvitamin and Nonmineral Nutritional Supplements. London, San Diego, Cambridge: Academic Press, Elsevier Inc.; 2019; pp.159–163.

28.  Hashem S, Nisar S, Sageena G, Macha MA, Yadav SK, Krishnankutty R, Therapeutic Effects of Curcumol in Several Diseases; An Overview. Nutrition and Cancer 2020;

29.  Yusuf M, Sadiya, Ahmed B, Gulfishan M. Modern Perspectives of Curcumin and its Derivatives as Promising Bioactive and Pharmaceutical Agents. Biointerface Res Appl Chem. 2022; 12 (6): 7177 – 7204.

30.  Gafar A, S Agustini S. Antioxidant Activity of Blended of Robusta Coffee (Coffea canephora L.) with The White Turmeric (Curcuma zedoaria (Berg.) Roscoe) and Wild Ginger (Curcuma xantorrhiza, Roxb.) IOP Conf. Ser.: Mater. Sci. Eng.2020; 742: 012018.

31.  Shehna S, Sreelekshmi S, Remani PR, Padmaja G, Lakshmi S. Anti-cancer, anti-bacterial and anti-oxidant properties of an active fraction isolated from Curcuma zedoaria rhizomes. Phytomed Plus. 2022; (2): 100195." target="_blank" rel="noopener">>

32.  European Medicines Agency. EMA/HMPC/329755/2017. European Union herbal monograph on Curcuma longa L., rhizome. London: 25 September 2018.

33.  European Medicines Agency. EMA/HMPC/604600/2012. Community herbal monograph on Curcuma xanthorrhiza Roxb. (C. xanthorrhiza D. Dietrich), rhizoma London: 28 January 2014.

34.  European Medicines Agency. EMA/HMPC/283629/2012. Assessment report on Camellia sinensis (L.) Kuntze, non fermentatum folium. London: 12 November 2013.

35.  Zhang S, Ohland C, Jobin C, Sang S. Degradation of black tea theaflavin through C-ring cleveage and gut microbiota. Food Science and Human Wellness 2022; 11: 598-605.

36.  Bonsignore G, Patrone M, Grosso F, Martinotti S, Ranzato E. Cancer Therapy Challenge: It Is Time to Look in the “St. Patrick’s Well” of the Nature Int J Mol Sci. 2021; 22: 10380.

37.  European Medicines Agency. EMA/HMPC/283630/2012. Community herbal monograph on Camellia sinensis (L.) Kuntze, non fermentatum folium. London: 12 November 2013.

38.  Erskine E, Subaşi BG, Vahapoglu B, Capanoglu E Coffee Phenolics and Their Interaction with Other Food Phenolics: Antagonistic and Synergistic Effects. ACS Omega 2022; 7: 1595−1601.

39.  Yashin A, Yashin Y, Wang JY, Nemzer B. Antioxidant and Antiradical Activity of Coffee. Antioxidants 2013; 2: 230-245;>

40.  Li X, Ao M, Zhang C, Fan S, Chen Z, Yu L. Zingiberis Rhizoma Recens: A Review of Its Traditional Uses, Phytochemistry, Pharmacology, and Toxicology. Evid Based Complement Alternat Med. 2021; 6668990,

41.  Liu S, Yang L., Zheng S, Hou A, Man W, Zhang J. A review: the botany, ethnopharmacology, phytochemistry, pharmacology of Cinnamomi cortex. RSC Adv., 2021; 11: 27461.

42.  Nassiri-Asl M, Hosseinzadeh H. Review of the Pharmacological Effects of Vitis vinifera (Grape) and its Bioactive Constituents: An Update. Phytother. Res. 2016;>

43. Marmitt DJ, Bitencourt S, da Silva GR, Rempel C, Goettert MI. Traditional plants with antioxidant properties in clinical trials—A systematic review. Phytother. Res 2021;1–21.>

Review articles