Normal human microbiota and dysbiosis - implications for health and disease

  • Dragana Božić University in Belgrade – Faculty of Pharmacy, Department of Microbiology and Immunology
  • Marina Milenković University in Belgrade – Faculty of Pharmacy, Department of Microbiology and Immunology
  • Jelena Antić Stanković University in Belgrade – Faculty of Pharmacy, Department of Microbiology and Immunology
  • Nevena Arsenović-Ranin University in Belgrade – Faculty of Pharmacy, Department of Microbiology and Immunology
  • Biljana Bufan University in Belgrade – Faculty of Pharmacy, Department of Microbiology and Immunology
Keywords: human microbiota, dysbiosis, commensal bacteria, dysbiosis-associated diseases

Abstract


The normal human microbiota, formerly called the "microbial flora," consists of bacteria, fungi, viruses, and parasites that colonise the skin and mucous membranes of the respiratory, gastrointestinal, and genitourinary tracts. The number and diversity of microorganisms varies between different body niches and is greatest in the intestinal tract. The microbiota contributes to the homeostasis of the human organism by preventing colonisation by pathogenic microorganisms, participating in digestive processes and metabolism, and regulating immune functions. Various environmental and genetic factors can lead to an imbalance in the human microbiota, called dysbiosis, which can affect human health. Dysbiosis is usually the result of decreased microbial diversity and a lower number of saprophytic microorganisms, followed by an overgrowth of opportunistic species. The most common diseases directly related to intestinal dysbiosis are antibiotic-associated diarrhoea and pseudomembranous colitis, both of which are associated with the excessive growth of harmful bacteria and Clostridioides difficile following broad-spectrum antibiotic therapy. Dysbiosis is associated with various health conditions or diseases such as acne, psoriasis, eczema, chronic obstructive pulmonary disease, inflammatory bowel disease, obesity, metabolic syndrome, type 2 diabetes, autoimmune diseases and allergies, neurological diseases such as Parkinson's disease, Alzheimer's disease, epilepsy and stroke, depression, anxiety, infertility, preterm birth, and malignancies.

References

Sender R, Fuchs S, Milo R. Revised Estimates for the Number of Human and Bacteria Cells in the Body. PLoS Biol. 2016;14(8):e1002533.

Gilbert JA, Blaser MJ, Caporaso JG, Jansson JK, Lynch SV, Knight R. Current understanding of the human microbiome. Nat Med. 2018;24(4):392-400.

Locey KJ, Lennon JT. Scaling laws predict global microbial diversity. Proc Natl Acad Sci USA. 2016;113(21):5970–5.

Al-Rashidi HE. Gut microbiota and immunity relevance in eubiosis and dysbiosis. Saudi J Biol Sci. 2022;29(3):1628-43.

Drew GC, Stevens EJ, King KC. Microbial evolution and transitions along the parasite-mutualist continuum. Nat Rev Microbiol. 2021;19(10):623-38.

Curtis M, Sperandio V. A complex relationship: the interaction among symbiotic microbes, invading pathogens, and their mammalian host. Mucosal Immunol. 2011;4(2):133–8.

Backhed F, Ley RE, Sonnenburg JL, Peterson DA, Gordon JI. Host-bacterial mutualism in the human intestine. Science. 2005;307(5717):1915-20.

Bakir M, Yagci A, Ulger N, Akbenlioglu C, Ilki A, Soyletir G. Asymtomatic carriage of Neisseria meningitidis and Neisseria lactamica in relation to Streptococcus pneumoniae and Haemophilus influenzae colonization in healthy children: apropos of 1400 children sampled. Eur J Epidemiol. 2001;17(11):1015-8.

Drayß M, Claus H, Hubert K, Thiel K, Berger A, Sing A, et al. Asymptomatic carriage of Neisseria meningitidis, Haemophilus influenzae, Streptococcus pneumoniae, Group A Streptococcus and Staphylococcus aureus among adults aged 65 years and older. PLoS One. 2019;14(2):e0212052.

Perez-Munoz ME, Arrieta MC, Ramer-Tait AE, Walter J. A critical assessment of the "sterile womb" and "in utero colonization" hypotheses: implications for research on the pioneer infant microbiome. Microbiome. 2017;5(1):48.

Agostinis C, Mangogna A, Bossi F, Ricci G, Kishore U, Bulla R. Uterine Immunity and Microbiota: A Shifting Paradigm. Front Immunol. 2019;10:2387.

Chen HJ, Gur TL. Intrauterine Microbiota: Missing, or the Missing Link? Trends Neurosci. 2019;42(6):402-13.

Blaser MJ, Devkota S, McCoy KD, Relman DA, Yassour M, Young VB. Lessons learned from the prenatal microbiome controversy. Microbiome. 2021;9(1):8.

Russell AL, McAdams ZL, Donovan E, Seilhamer N, Siegrist M, Franklin CL, et al. The contribution of maternal oral, vaginal, and gut microbiota to the developing offspring gut. Sci Rep. 2023;13(1):13660.

Kalbermatter C, Fernandez Trigo N, Christensen S, Ganal-Vonarburg SC. Maternal Microbiota, Early Life Colonization and Breast Milk Drive Immune Development in the Newborn. Front Immunol. 2021;12:683022.

Zhuang L, Chen H, Zhang S, Zhuang J, Li Q, Feng Z. Intestinal Microbiota in Early Life and Its Implications on Childhood Health. Genomics Proteomics Bioinformatics. 2019;17(1):13-25.

Vandenplas Y, Carnielli VP, Ksiazyk J, Luna MS, Migacheva N, Mosselmans JM, et al. Factors affecting early-life intestinal microbiota development. Nutrition. 2020;78:110812.

Manos J. The human microbiome in disease and pathology. APMIS. 2022;130(12):690-705.

Adak A, Khan MR. An insight into gut microbiota and its functionalities. Cell Mol Life Sci. 2019;76(3):473-93.

Heilbronner S, Krismer B, Brötz-Oesterhelt H, Peschel A. The microbiome-shaping roles of bacteriocins. Nat Rev Microbiol. 2021;19(11):726-39.

Swaney MH, Kalan LR. Living in Your Skin: Microbes, Molecules, and Mechanisms. Infect Immun. 2021;89(4):e00695-20.

Tachedjian G, Aldunate M, Bradshaw CS, Cone RA. The role of lactic acid production by probiotic Lactobacillus species in vaginal health. Res Microbiol. 2017;168(9-10):782-92.

Anderson JW, Baird P, Davis RH Jr, Ferreri S, Knudtson M, Koraym A, et al. Health benefits of dietary fiber. Nutr Rev. 2009;67(4):188–205.

Tan J, McKenzie C, Potamitis M, Thorburn AN, Mackay CR, Macia L. The role of short-chain fatty acids in health and disease. Adv Immunol. 2014;121:91-119.

LeBlanc JG, Milani C, de Giori GS, Sesma F, van Sinderen D, Ventura M. Bacteria as vitamin suppliers to their host: a gut microbiota perspective. Curr Opin Biotechnol. 2013;24(2):160-8.

Ege MJ, Mayer M, Normand AC, Genuneit J, Cookson WO, Braun-Fahrländer C, et al. Exposure to environmental microorganisms and childhood asthma. N Engl J Med. 2011;364(8):701-9.

Matson V, Chervin CS, Gajewski TF. Cancer and the Microbiome-Influence of the Commensal Microbiota on Cancer, Immune Responses, and Immunotherapy. Gastroenterology. 2021;160(2):600-13.

McInnes RS, McCallum GE, Lamberte LE, van Schaik W. Horizontal transfer of antibiotic resistance genes in the human gut microbiome. Curr Opin Microbiol. 2020;53:35-43.

Connor TR, Bäumler AJ. Dysbiosis: from fiction to function. Am J Physiol Gastrointest Liver Physiol. 2019;317(5):G602-G608.

Seifert H. The Clinical Importance of Microbiological Findings in the Diagnosis and Management of Bloodstream Infections, Clin Infect Dis. 2009;48(4):S238–S245.

Flowers L, Grice EA. The Skin Microbiota: Balancing Risk and Reward. Cell Host Microbe. 2020;28(2):190-200.

Hou K, Wu ZX, Chen XY, Wang JQ, Zhang D, Xiao C, et al. Microbiota in health and diseases. Signal Transduct Target Ther. 2022;7(1):135.

Pickard JM, Zeng MY, Caruso R, Núñez G. Gut microbiota: Role in pathogen colonization, immune responses, and inflammatory disease. Immunol Rev. 2017;279(1):70-89

Martin DH. The Microbiota of the Vagina and Its Influence on Women’s Health and Disease. Am J Med Sci. 2012;343(1):2–9.

Biedermann L, Rogler G. The intestinal microbiota: its role in health and disease. Eur J Pediatr. 2015;174(2):151-67.

Arumugam M, Raes J, Pelletier E, Le Paslier D, Yamada T, Mende DR, et al. Enterotypes of the human gut microbiome. Nature. 2011;473(7346):174-80. Erratum in: Nature. 2011;474(7353):666. Erratum in: Nature. 2014;506(7489):516.

Mullish BH, Williams HR. Clostridium difficile infection and antibiotic-associated diarrhoea. Clin Med (Lond). 2018;18(3):237-41.

Evans-Marin HL, Cong Y. Microbiota regulation of inflammatory bowel disease. Inflamm Allergy Drug Targets. 2014;13(1):65-73.

Caruso R, Lo BC, Núñez G. Host-microbiota interactions in inflammatory bowel disease. Nat Rev Immunol. 2020;20(7):411-26.

Elzayat H, Mesto G, Al-Marzooq F. Unraveling the Impact of Gut and Oral Microbiome on Gut Health in Inflammatory Bowel Diseases. Nutrients. 2023;15(15):3377.

Raftery AL, Tsantikos E, Harris NL, Hibbs ML. Links Between Inflammatory Bowel Disease and Chronic Obstructive Pulmonary Disease. Front Immunol. 2020;11:2144.

Canakis A, Haroon M, Weber HC. Irritable bowel syndrome and gut microbiota. Curr Opin Endocrinol Diabetes Obes. 2020;27(1):28-35.

Shaikh SD, Sun N, Canakis A, Park WY, Weber HC. Irritable Bowel Syndrome and the Gut Microbiome: A Comprehensive Review. J Clin Med. 2023;12(7):2558.

Liu B, Ye D, Yang H, Song J, Sun X, Mao Y, et al. Two-Sample Mendelian Randomization Analysis Investigates Causal Associations Between Gut Microbial Genera and Inflammatory Bowel Disease, and Specificity Causal Associations in Ulcerative Colitis or Crohn's Disease. Front Immunol. 2022;13:921546.

Van Son J, Koekkoek LL, La Fleur SE, Serlie MJ, Nieuwdorp M. The Role of the Gut Microbiota in the Gut-Brain Axis in Obesity: Mechanisms and Future Implications. Int J Mol Sci. 2021;22(6):2993.

Amabebe E, Robert FO, Agbalalah T, Orubu ESF. Microbial dysbiosis-induced obesity: role of gut microbiota in homoeostasis of energy metabolism. Br J Nutr. 2020;123(10):1127-37.

Liu BN, Liu XT, Liang ZH, Wang JH. Gut microbiota in obesity. World J Gastroenterol. 2021;27(25):3837-50.

Bishehsari F, Voigt RM, Keshavarzian A. Circadian rhythms and the gut microbiota: from the metabolic syndrome to cancer. Nat Rev Endocrinol. 2020;16(12):731-39.

Wang PX, Deng XR, Zhang CH, Yuan HJ. Gut microbiota and metabolic syndrome. Chin Med J (Engl). 2020;133(7):808-16.

Umbrello G, Esposito S. Microbiota and Neurologic Diseases: Potential Effects of Probiotics. J Transl Med. 2016;14:298.

Kandpal M, Indari O, Baral B, Jakhmola S, Tiwari D, Bhandari V, et al. Dysbiosis of Gut Microbiota from the Perspective of the Gut–Brain Axis: Role in the Provocation of Neurological Disorders. Metabolites. 2022;12:1064.

Tiwari P, Dwivedi R, Bansal M, Tripathi M, Dada R. Role of Gut Microbiota in Neurological Disorders and Its Therapeutic Significance. J Clin Med. 2023;12(4):1650.

Wang Q, Luo Y, Ray Chaudhuri K, Reynolds R, Tan EK, Pettersson S. The role of gut dysbiosis in Parkinson's disease: mechanistic insights and therapeutic options. Brain. 2021;144(9):2571-93.

Chandra S, Sisodia SS, Vassar RJ. The Gut Microbiome in Alzheimer’s Disease: What We Know and What Remains to Be Explored. Mol Neurodegener. 2023;18(1):9.

Jin J, Xu Z, Zhang L, Zhang C, Zhao X, Mao Y, et al. Gut-Derived β-Amyloid: Likely a Centerpiece of the Gut–Brain Axis Contributing to Alzheimer’s Pathogenesis. Gut Microbes. 2023;15:2167172.

Fülöp T, Itzhaki RF, Balin BJ, Miklossy J, Barron AE. Role of Microbes in the Development of Alzheimer’s Disease: State of the Art-An International Symposium Presented at the 2017 IAGG Congress in San Francisco. Front Genet. 2018;9:362.

Bairamian D, Sha S, Rolhion N, Sokol H, Dorothée G, Lemere CA, et al. Microbiota in Neuroinflammation and Synaptic Dysfunction: A Focus on Alzheimer’s Disease. Mol Neurodegener. 2022;17(1):19.

Arulsamy A, Tan QY, Balasubramaniam V, O’Brien TJ, Shaikh MF. Gut Microbiota and Epilepsy: A Systematic Review on Their Relationship and Possible Therapeutics. ACS Chem Neurosci. 2020;11:3488–3498.

Zhang L, Li S, Tai Z, Yu C, Xu Z. Gut Microbes Regulate Innate Immunity and Epilepsy. Front Neurosci. 2022;16:870197.

Ding M, Lang Y, Shu H, Shao J, Cui L. Microbiota-Gut-Brain Axis and Epilepsy: A Review on Mechanisms and Potential Therapeutics. Front Immunol. 2021;12:742449.

Xia GH, You C, Gao XX, Zeng XL, Zhu JJ, Xu KY, et al. Stroke Dysbiosis Index (SDI) in Gut Microbiome Are Associated with Brain Injury and Prognosis of Stroke. Front Neurol. 2019;10:397.

Tu R, Xia J. Stroke and Vascular Cognitive Impairment: The Role of Intestinal Microbiota Metabolite TMAO. CNS Neurol Disord Drug Targets. 2023. doi: 10.2174/1871527322666230203140805.

Boddy SL, Giovannelli I, Sassani M, Cooper-Knock J, Snyder MP, Segal E, et al. The Gut Microbiome: A Key Player in the Complexity of Amyotrophic Lateral Sclerosis (ALS). BMC Med. 2021;19(1):13.

Zeng Q, Shen J, Chen K, Zhou J, Liao Q, Lu K, et al. The Alteration of Gut Microbiome and Metabolism in Amyotrophic Lateral Sclerosis Patients. Sci Rep. 2020;10(1):12998.

Qin X, Pan C, Cai Q, Zhao Y, He D, Wei W, et al. Assessing the effect of interaction between gut microbiome and inflammatory bowel disease on the risks of depression. Brain Behav Immun Health. 2022;26:100557.

Kumar A, Pramanik J, Goyal N, Chauhan D, Sivamaruthi BS, Prajapati BG, et al. Gut Microbiota in Anxiety and Depression: Unveiling the Relationships and Management Options. Pharmaceuticals (Basel). 2023;16(4):565.

Evrensel A, Tarhan KN. Emerging role of Gut-microbiota-brain axis in depression and therapeutic implication. Prog Neuropsychopharmacol Biol Psychiatry. 2021;106:110138.

Chudzik A, Orzyłowska A, Rola R, Stanisz GJ. Probiotics, Prebiotics and Postbiotics on Mitigation of Depression Symptoms: Modulation of the Brain-Gut-Microbiome Axis. Biomolecules. 2021;11(7):1000.

Olson CA, Vuong HE, Yano JM, Liang QY, Nusbaum DJ, Hsiao EY. The Gut Microbiota Mediates the Anti-Seizure Effects of the Ketogenic Diet. Cell. 2018;173(7):1728–41.

Lee HJ, Kim M. Skin Barrier Function and the Microbiome. Int J Mol Sci. 2022;23(21):13071.

Aragona P, Baudouin C, Benitez Del Castillo JM, Messmer E, Barabino S, Merayo-Lloves J, et al. The ocular microbiome and microbiota and their effects on ocular surface pathophysiology and disorders. Surv Ophthalmol. 2021;66(6):907-25.

Carmona-Cruz S, Orozco-Covarrubias L, Sáez-de-Ocariz M. The Human Skin Microbiome in Selected Cutaneous Diseases. Front Cell Infect Microbiol. 2022;12:834135.

Belizário J, Garay-Malpartida M, Faintuch J. Lung microbiome and origins of the respiratory diseases. Curr Res Immunol. 2023;4:100065.

Li N, Dai Z, Wang Z, Deng Z, Zhang J, Pu J, et al. Gut microbiota dysbiosis contributes to the development of chronic obstructive pulmonary disease. Respir Res. 2021;22(1):274.

Chiu YC, Lee SW, Liu CW, Lan TY, Wu LS. Relationship between gut microbiota and lung function decline in patients with chronic obstructive pulmonary disease: a 1-year follow-up study. Respir Res. 2022;23(1):10. Erratum in: Respir Res. 2022;23(1):179.

Karakasidis E, Kotsiou OS, Gourgoulianis KI. Lung and Gut Microbiome in COPD. J Pers Med. 2023;13(5):804.

Leitao Filho FS, Alotaibi NM, Ngan D, Tam S, Yang J, Hollander Z, et al. Sputum Microbiome Is Associated with 1-Year Mortality after Chronic Obstructive Pulmonary Disease Hospitalizations. Am J Respir Crit Care Med. 2019;199(10):1205-13.

Su L, Qiao Y, Luo J, Huang R, Li Z, Zhang H, et al. Characteristics of the sputum microbiome in COPD exacerbations and correlations between clinical indices. J Transl Med. 20225;20(1):76.

Wang Z, Bafadhel M, Haldar K, Spivak A, Mayhew D, Miller BE, et al. Lung microbiome dynamics in COPD exacerbations. Eur Respir J. 2016;47(4):1082-92.

Barcik W, Boutin RCT, Sokolowska M, Finlay BB. The Role of Lung and Gut Microbiota in the Pathology of Asthma. Immunity. 2020;52(2):241-55.

Ver Heul A, Planer J, Kau AL. The Human Microbiota and Asthma. Clin Rev Allergy Immunol. 2019;57(3):350-63.

Hufnagl K, Pali-Schöll I, Roth-Walter F, Jensen-Jarolim E. Dysbiosis of the gut and lung microbiome has a role in asthma. Semin Immunopathol. 2020;42(1):75-93.

Chunxi L, Haiyue L, Yanxia L, Jianbing P, Jin S. The Gut Microbiota and Respiratory Diseases: New Evidence. J Immunol Res. 2020;2020:2340670.

Cho DY, Hunter RC, Ramakrishnan VR. The Microbiome and Chronic Rhinosinusitis. Immunol Allergy Clin North Am. 2020;40(2):251-63.

Françoise A, Héry-Arnaud G. The Microbiome in Cystic Fibrosis Pulmonary Disease. Genes (Basel). 2020;11(5):536.

Xia X, Chen J, Cheng Y, Chen F, Lu H, Liu J, et al. Comparative analysis of the lung microbiota in patients with respiratory infections, tuberculosis, and lung cancer: a preliminary study. Front Cell Infect Microbiol. 2022;12. doi: 10.3389/fcimb.2022.1024867.

Enjeti A, Sathkumara HD, Kupz A. Impact of the gut-lung axis on tuberculosis susceptibility and progression. Front Microbiol. 20236;14:1209932.

Aragón IM, Herrera-Imbroda B, Queipo-Ortuño MI, Castillo E, Del Moral JS, Gómez-Millán J, et al. The Urinary Tract Microbiome in Health and Disease. Eur Urol Focus. 2018;4(1):128-38.

Shoemaker R, Kim J. Urobiome: An outlook on the metagenome of urological diseases. Investig Clin Urol. 2021;62(6):611-22.

Sobel N. Is there a protective role for vaginal flora? Curr Infect Dis Rep. 1999;1(4):379–83.

Ravel J, Gajer P, Abdo Z, Schneider GM, Koenig SS, McCulle SL, et al. Vaginal microbiome of reproductive-age women. Proc Natl Acad Sci U S A. 2011;108 Suppl 1(Suppl 1):4680-7.

Buchta V. Vaginal microbiome. Ceska Gynekol. 2018;83(5):371-9.

Gajer P, Brotman RM, Bai G, Sakamoto J, Schütte UM, Zhong X, et al. Temporal dynamics of the human vaginal microbiota. Sci Transl Med. 2012;4(132):132ra52.

White BA, Creedon DJ, Nelson KE, Wilson BA. The vaginal microbiome in health and disease. Trends Endocrinol Metab. 2011;22(10):389–93.

Karstens L, Asquith M, Davin S, Stauffer P, Fair D, Gregory WT, et al. Does the Urinary Microbiome Play a Role in Urgency Urinary Incontinence and Its Severity? Front Cell Infect Microbiol. 2016;6:78.

Bhide A, Tailor V, Khullar V. Interstitial cystitis/bladder pain syndrome and recurrent urinary tract infection and the potential role of the urinary microbiome. Post Reprod Health. 2020;26(2):87-90.

Zhang W, Yang F, Mao S, Wang R, Chen H, Ran Y, et al. Bladder cancer-associated microbiota: Recent advances and future perspectives. Heliyon. 2023;9(1):e13012.

Porter CM, Shrestha E, Peiffer LB, Sfanos KS. The microbiome in prostate inflammation and prostate cancer. Prostate Cancer Prostatic Dis. 2018;21(3):345-54.

Kustrimovic N, Bombelli R, Baci D, Mortara L. Microbiome and Prostate Cancer: A Novel Target for Prevention and Treatment. Int J Mol Sci. 2023;24(2):1511.

Van Gerwen OT, Smith SE, Muzny CA. Bacterial Vaginosis in Postmenopausal Women. Curr Infect Dis Rep. 2023;25(1):7-15.

Pramanick R, Mayadeo N, Warke H, Begum S, Aich P, Aranha C. Vaginal microbiota of asymptomatic bacterial vaginosis and vulvovaginal candidiasis: Are they different from normal microbiota? Microb Pathog. 2019;134:103599.

Tortelli BA, Lewis WG, Allsworth JE, Member-Meneh N, Foster LR, Reno HE, et al. Associations between the vaginal microbiome and Candida colonization in women of reproductive age. Am J Obstet Gynecol. 2020;222(5):471.e1-471.e9.

Chiu SF, Huang PJ, Cheng WH, Huang CY, Chu LJ, Lee CC, et al. Vaginal Microbiota of the Sexually Transmitted Infections Caused by Chlamydia trachomatis and Trichomonas vaginalis in Women with Vaginitis in Taiwan. Microorganisms. 2021;9(9):1864.

Ritu W, Enqi W, Zheng S, Wang J, Ling Y, Wang Y. Evaluation of the Associations Between Cervical Microbiota and HPV Infection, Clearance, and Persistence in Cytologically Normal Women. Cancer Prev Res (Phila). 2019;12(1):43–56.

Loeper N, Graspeuntner S, Rupp J. Microbiota changes impact on sexually transmitted infections and the development of pelvic inflammatory disease. Microbes Infect. 2018;20(9-10):505-11.

Wang H, Ma Y, Li R, Chen X, Wan L, Zhao W. Associations of cervicovaginal lactobacilli with high-risk HPV infection, cervical intraepithelial neoplasia, and cancer: a systematic review and meta-analysis. J Infect Dis. 2019;220(8):1243-54.

Norenhag J, Du J, Olovsson M, Verstraelen H, Engstrand L, Brusselaers N. The vaginal microbiota, human papillomavirus and cervical dysplasia: a systematic review and network meta-analysis. BJOG. 2020;127(2):171–80.

So KA, Yang EJ, Kim NR, Hong SR, Lee JH, Hwang CS, et al. Changes of vaginal microbiota during cervical carcinogenesis in women with human papillomavirus infection. PLoS ONE. 2020;15:e0238705.

Seo SS, Oh HY, Lee JK, Kong JS, Lee DO, Kim MK. Combined effect of diet and cervical microbiome on the risk of cervical intraepithelial neoplasia. Clin Nutr. 2016;35(6):1434–41.

Cone RA. Vaginal microbiota and sexually transmitted infections that may influence transmission of cell-associated HIV. J Infect Dis. 2014;210 Suppl 3(Suppl 3):S616-21.

Zhu B, Tao Z, Edupuganti L, Serrano MG, Buck GA. Roles of the Microbiota of the Female Reproductive Tract in Gynecological and Reproductive Health. Microbiol Mol Biol Rev. 2022;86(4):e0018121.

Franasiak JM, Scott RTJ. Introduction: Microbiome in human reproduction. Fertil Steril. 2015;104(6):1341-43.

Jiang I, Yong PJ, Allaire C, Bedaiwy MA. Intricate Connections between the Microbiota and Endometriosis. Int J Mol Sci. 2021;22(11):5644.

Muzii L, Di Tucci C, Galati G, Mattei G, Pietrangeli D, Di Donato V, et al. The role of microbiota in female fertility and infertility. Minerva Obstet Gynecol. 2022;74(5):419–33.

Franasiak JM, Scott RTJ. Reproductive tract microbiome in assisted reproductive technologies. Fertil Steril. 2015;104(6):1364–71.

Fox C, Eichelberger K. Maternal microbiome and pregnancy outcomes. Fertil Steril. 2015;104(6):1358–63.

Heil BA, Paccamonti DL, Sones JL. Role for the mammalian female reproductive tract microbiome in pregnancy outcomes. Physiol Genom. 2019;51(8):390–9.

Fen-Ting L, Shuo Y, Zi Y, Ping Z, Tianliu P, Jingwen Y, et al. An Altered Microbiota in the Lower and Upper Female Reproductive Tract of Women with Recurrent Spontaneous Abortion. Microbiol Spectr. 2022;10(3):e00462-22.

Seo SS, Arokiyaraj S, Kim MK, Oh HY, Kwon M, Kong JS, et al. High Prevalence of Leptotrichia amnionii, Atopobium vaginae, Sneathia sanguinegens, and Factor 1 Microbes and Association of Spontaneous Abortion among Korean Women. Biomed Res Int. 2017;2017:5435089.

Chen S, Xue X, Zhang Y, Zhang H, Huang X, Chen X, et al. Vaginal Atopobium is Associated with Spontaneous Abortion in the First Trimester: A Prospective Cohort Study in China. Microbiol Spectr. 2022;10(2):e0203921.

Liao J, Shenhav L, Urban JA, Serrano M, Zhu B, Buck GA, et al. Microdiversity of the vaginal microbiome is associated with preterm birth. Nat Commun. 2023;14(1):4997.

Bayar E, Bennett PR, Chan D, Sykes L, MacIntyre DA. The pregnancy microbiome and preterm birth. Semin Immunopathol. 2020;42(4):487-99.

Doroftei B, Ilie OD, Armeanu T, Stoian IL, Anton N, Babici RG, et al. A Narrative Review Discussing the Obstetric Repercussions Due to Alterations of Personalized Bacterial Sites Developed within the Vagina, Cervix, and Endometrium. J Clin Med. 2023;12(15):5069.

Published
2024/02/22
Section
Review articles