Lactoferrin-mediated targeting of oncogenic pathways for cancer chemoprevention and adjunct treatment: from mechanistic insights to clinical trials

  • Iqra Mobeen Samaa Fertilization Center Jumeriah, Department of Pharmacy
  • Uteuliyev Yerzhan Sabitaliyevich Scientific Center for Innovative Technologies and Research
  • Aizat Moldagassimova Scientific Center for Innovative Technologies and Research
  • Rukset Attar Yeditepe University Hospital, Department of Obstetrics and Gynecology
Keywords: cancer, lactoferrin, metastasis, clinical trials, cell signaling

Abstract


Genetic, genomic and proteomic analyses of cells, tissues and body fluids have generated a wealth of precious information about the intricate mechanisms which underlie carcinogenesis and metastasis. Lactoferrin, a multifunctional cationic glycoprotein, has attracted widespread appreciation because of its characteristically novel properties for cancer chemoprevention. Tumor microenvironment is a highly complicated and sophisticated ecosystem, significantly reshaped by a wide variety of treatment regimes. Therefore, lactoferrin-mediated immunostimulatory role reshapes tumor microenvironment and inhibits cancer progression. There is sufficient experimental evidence related to immunostimulatory ability of lactoferrin in tumor microenvironment. Different clinical trials have been conducted for the evaluation of clinical efficacy of lactoferrin in different cancer patients. It is necessary to carefully interpret the clinical evidence and identify the major gaps in our understanding related to the selection of group of cancer patients likely to benefit the most from the combinatorial treatment regime comprised of lactoferrin and chemotherapeutic drugs. Moreover, lack of efficacy should be analyzed by a team of interdisciplinary researchers for a broader and comprehensive understanding of the mechanisms underlying treatment failure.

References

Clardy J, Walsh C. Lessons from natural molecules. Nature. 2004 Dec 16;432(7019):829-37.

Mann J. Natural products in cancer chemotherapy: past, present and future. Nat Rev Cancer. 2002 Feb;2(2):143-8.

Rodrigues T, Reker D, Schneider P, Schneider G. Counting on natural products for drug design. Nat Chem. 2016 Jun;8(6):531-41.

Koehn FE, Carter GT. The evolving role of natural products in drug discovery. Nat Rev Drug Discov. 2005 Mar;4(3):206-20.

Oram JD, Reiter B. Inhibition of bacteria by lactoferrin and other iron-chelating agents. Biochim Biophys Acta. 1968 Dec 23;170(2):351-65.

Bullen JJ, Armstrong JA. The role of lactoferrin in the bactericidal function of polymorphonuclear leucocytes. Immunology. 1979 Apr;36(4):781-91.

Konttinen YT, Reitamo S. Localization of lactoferrin in polymorphonuclear neutrophil leucocytes. Br J Haematol. 1979 Nov;43(3):481.

Green I, Kirkpatrick CH, Dale DC. Lactoferrin--specific localization in the nuclei of human polymorphonuclear neutrophilic leukocytes. Proc Soc Exp Biol Med. 1971 Sep;137(4):1311-7.

Xu SF, Zhang YH, Wang S, Pang ZQ, Fan YG, Li JY, et al. Lactoferrin ameliorates dopaminergic neurodegeneration and motor deficits in MPTP-treated mice. Redox Biol. 2019 Feb;21:101090.

Kamalinia G, Khodagholi F, Atyabi F, Amini M, Shaerzadeh F, Sharifzadeh M, Dinarvand R. Enhanced brain delivery of deferasirox-lactoferrin conjugates for iron chelation therapy in neurodegenerative disorders: in vitro and in vivo studies. Mol Pharm. 2013 Dec 2;10(12):4418-31.

Kruzel ML, Bacsi A, Choudhury B, Sur S, Boldogh I. Lactoferrin decreases pollen antigen-induced allergic airway inflammation in a murine model of asthma. Immunology. 2006 Oct;119(2):159-66.

Masson PL, Heremans JF, Schonne E. Lactoferrin, an iron-binding protein in neutrophilic leukocytes. J Exp Med. 1969 Sep 1;130(3):643-58.

Arnold RR, Cole MF, McGhee JR. A bactericidal effect for human lactoferrin. Science. 1977 Jul 15;197(4300):263-5.

Venge P, Strömberg A, Braconier JH, Roxin LE, Olsson I. Neutrophil and eosinophil granulocytes in bacterial infection: sequential studies of cellular and serum levels of granule proteins. Br J Haematol. 1978 Apr;38(4):475-83.

Hanahan D, Weinberg RA. Hallmarks of cancer: the next generation. Cell. 2011;144: 646-674.

Puisieux A, Brabletz T, Caramel J. Oncogenic roles of EMT-inducing transcription factors. Nat Cell Biol. 2014;16(6):488-94.

Dongre A, Weinberg RA. New insights into the mechanisms of epithelial-mesenchymal transition and implications for cancer. Nat Rev Mol Cell Biol. 2019;20:69-84.

Valastyan S, Weinberg RA. Tumor metastasis: molecular insights and evolving paradigms. Cell. 2011;147:275-92.

Farooqi AA, Pinheiro M, Granja A, Farabegoli F, Reis S, Attar R, et al. EGCG Mediated Targeting of Deregulated Signaling Pathways and Non-Coding RNAs in Different Cancers: Focus on JAK/STAT, Wnt/β-Catenin, TGF/SMAD, NOTCH, SHH/GLI, and TRAIL Mediated Signaling Pathways. Cancers (Basel). 2020 Apr 12;12(4):951.

Farhan M, Ullah MF, Faisal M, Farooqi AA, Sabitaliyevich UY, Biersack B, Ahmad A. Differential Methylation and Acetylation as the Epigenetic Basis of Resveratrol's Anticancer Activity. Medicines (Basel). 2019 Feb 13;6(1):24.

Farooqi AA, Fayyaz S, Hou MF, Li KT, Tang JY, Chang HW. Reactive oxygen species and autophagy modulation in non-marine drugs and marine drugs. Mar Drugs. 2014 Nov 13;12(11):5408-24.

Wang HR, Tang JY, Wang YY, Farooqi AA, Yen CY, Yuan SF, et al. Manoalide Preferentially Provides Antiproliferation of Oral Cancer Cells by Oxidative Stress-Mediated Apoptosis and DNA Damage. Cancers (Basel). 2019 Sep 4;11(9):1303.

Yen YH, Farooqi AA, Li KT, Butt G, Tang JY, Wu CY, et al. Methanolic extracts of Solieria robusta inhibits proliferation of oral cancer Ca9-22 cells via apoptosis and oxidative stress. Molecules. 2014 Nov 14;19(11):18721-32.

Farooqi AA, Qureshi MZ, Khalid S, Attar R, Martinelli C, Sabitaliyevich UY, et al. Regulation of Cell Signaling Pathways by Berberine in Different Cancers: Searching for Missing Pieces of an Incomplete Jig-Saw Puzzle for an Effective Cancer Therapy. Cancers (Basel). 2019 Apr 4;11(4):478.

Tang JY, Chuang YT, Shiau JP, Yen CY, Chang FR, Tsai YH, et al. Connection between Radiation-Regulating Functions of Natural Products and miRNAs Targeting Radiomodulation and Exosome Biogenesis. Int J Mol Sci. 2023 Aug 4;24(15):12449.

Chen YN, Chan YH, Shiau JP, Farooqi AA, Tang JY, Chen KL, et al. The neddylation inhibitor MLN4924 inhibits proliferation and triggers apoptosis of oral cancer cells but not for normal cells. Environ Toxicol. 2024 Jan;39(1):299-313.

Farooqi AA, Rakhmetova VS, Kapanova G, Tashenova G, Tulebayeva A, Akhenbekova A, et al. Bufalin-Mediated Regulation of Cell Signaling Pathways in Different Cancers: Spotlight on JAK/STAT, Wnt/β-Catenin, mTOR, TRAIL/TRAIL-R, and Non-Coding RNAs. Molecules. 2023 Feb 27;28(5):2231.

Farooqi AA, Turgambayeva A, Tashenova G, Tulebayeva A, Bazarbayeva A, Kapanova G, Abzaliyeva S. Multifunctional Roles of Betulinic Acid in Cancer Chemoprevention: Spotlight on JAK/STAT, VEGF, EGF/EGFR, TRAIL/TRAIL-R, AKT/mTOR and Non-Coding RNAs in the Inhibition of Carcinogenesis and Metastasis. Molecules. 2022 Dec 21;28(1):67.

Farooqi AA, Butt G, El-Zahaby SA, Attar R, Sabitaliyevich UY, Jovic JJ, et al. Luteolin mediated targeting of protein network and microRNAs in different cancers: Focus on JAK-STAT, NOTCH, mTOR and TRAIL-mediated signaling pathways. Pharmacol Res. 2020 Oct;160:105188.

Farooqi AA. Regulation of deregulated cell signaling pathways by pomegranate in different cancers: Re-interpretation of knowledge gaps. Semin Cancer Biol. 2021 Aug;73:294-301.

Farooqi AA, Rakhmetova V, Kapanova G, Tanbayeva G, Mussakhanova A, Abdykulova A, Ryskulova AG. Role of Ubiquitination and Epigenetics in the Regulation of AhR Signaling in Carcinogenesis and Metastasis: "Albatross around the Neck" or "Blessing in Disguise". Cells. 2023 Sep 29;12(19):2382.

Gasparri ML, Besharat ZM, Farooqi AA, Khalid S, Taghavi K, Besharat RA, et al. MiRNAs and their interplay with PI3K/AKT/mTOR pathway in ovarian cancer cells: a potential role in platinum resistance. J Cancer Res Clin Oncol. 2018 Dec;144(12):2313-2318.

Farooqi AA, Qureshi MZ, Coskunpinar E, Naqvi SK, Yaylim I, Ismail M. MiR-421, miR-155 and miR-650: emerging trends of regulation of cancer and apoptosis. Asian Pac J Cancer Prev. 2014;15(5):1909-12.

Farooqi AA, Attar R. Role of Platelet-Derived Growth Factor-mediated signaling in carcinogenesis and metastasis. Cell Mol Biol (Noisy-le-grand). 2023 Dec 20;69(14):300-302.

Kowalczyk P, Kaczyńska K, Kleczkowska P, Bukowska-Ośko I, Kramkowski K, Sulejczak D. The Lactoferrin Phenomenon-A Miracle Molecule. Molecules. 2022 May 4;27(9):2941.

Ramírez-Rico G, Drago-Serrano ME, León-Sicairos N, de la Garza M. Lactoferrin: A Nutraceutical with Activity against Colorectal Cancer. Front Pharmacol. 2022 Feb 21;13:855852.

Pan S, Weng H, Hu G, Wang S, Zhao T, Yao X, et al. Lactoferrin may inhibit the development of cancer via its immunostimulatory and immunomodulatory activities (Review). Int J Oncol. 2021 Nov;59(5):85.

Rodrigues L, Teixeira J, Schmitt F, Paulsson M, Månsson HL. Lactoferrin and cancer disease prevention. Crit Rev Food Sci Nutr. 2009 Mar;49(3):203-17.

Wolf JS, Li G, Varadhachary A, Petrak K, Schneyer M, Li D, et al. Oral lactoferrin results in T cell-dependent tumor inhibition of head and neck squamous cell carcinoma in vivo. Clin Cancer Res. 2007 Mar 1;13(5):1601-10.

Iglesias-Figueroa BF, Siqueiros-Cendón TS, Gutierrez DA, Aguilera RJ, Espinoza-Sánchez EA, Arévalo-Gallegos S, et al. Recombinant human lactoferrin induces apoptosis, disruption of F-actin structure and cell cycle arrest with selective cytotoxicity on human triple negative breast cancer cells. Apoptosis. 2019 Aug;24(7-8):562-577.

Sheng M, Zhao Y, Zhang A, Wang L, Zhang G. The effect of LfcinB9 on human ovarian cancer cell SK-OV-3 is mediated by inducing apoptosis. J Pept Sci. 2014 Oct;20(10):803-10.

Rahman R, Fonseka AD, Sua SC, Ahmad M, Rajendran R, Ambu S, et al. Inhibition of breast cancer xenografts in a mouse model and the induction of apoptosis in multiple breast cancer cell lines by lactoferricin B peptide. J Cell Mol Med. 2021 Aug;25(15):7181-7189.

Shi H, Li W. Inhibitory effects of human lactoferrin on U14 cervical carcinoma through upregulation of the immune response. Oncol Lett. 2014 Mar;7(3):820-826.

Wang J, Li Q, Li K, Ou Y, Han Z, Gao D, Li J. Effects of adenovirus vectors mediated human lactoferrin cDNA on mice bearing EMT6 breast carcinoma. Pharmazie. 2011 Sep;66(9):704-9.

Wang J, Li Q, Ou Y, Han Z, Li K, Wang P, Zhou S. Inhibition of tumor growth by recombinant adenovirus containing human lactoferrin through inducing tumor cell apoptosis in mice bearing EMT6 breast cancer. Arch Pharm Res. 2011 Jun;34(6):987-95.

McKeown ST, Lundy FT, Nelson J, Lockhart D, Irwin CR, Cowan CG, Marley JJ. The cytotoxic effects of human neutrophil peptide-1 (HNP1) and lactoferrin on oral squamous cell carcinoma (OSCC) in vitro. Oral Oncol. 2006 Aug;42(7):685-90.

Wolf JS, Li D, Taylor RJ, O'Malley BW Jr. Lactoferrin inhibits growth of malignant tumors of the head and neck. ORL J Otorhinolaryngol Relat Spec. 2003 Sep-Oct;65(5):245-9.

Zalutskii IV, Lukianova NY, Storchai DM, Burlaka AP, Shvets YV, Borikun TV, et al. Influence of exogenous lactoferrin on the oxidant/antioxidant balance and molecular profile of hormone receptor-positive and -negative human breast cancer cells in vitro. Exp Oncol. 2017 Jul;39(2):106-111.

Li H, Li C, Zhang B, Jiang H. Lactoferrin suppresses the progression of colon cancer under hyperglycemia by targeting WTAP/m6A/NT5DC3/HKDC1 axis. J Transl Med. 2023 Feb 28;21(1):156.

Li H, Yao Q, Li C, Fan L, Wu H, Zheng N, Wang J. Lactoferrin Inhibits the Development of T2D-Induced Colon Tumors by Regulating the NT5DC3/PI3K/AKT/mTOR Signaling Pathway. Foods. 2022 Dec 7;11(24):3956.

Wei L, Zhang X, Wang J, Ye Q, Zheng X, Peng Q, et al. Lactoferrin deficiency induces a pro-metastatic tumor microenvironment through recruiting myeloid-derived suppressor cells in mice. Oncogene. 2020 Jan;39(1):122-135.

Deng M, Zhang W, Tang H, Ye Q, Liao Q, Zhou Y, et al. Lactotransferrin acts as a tumor suppressor in nasopharyngeal carcinoma by repressing AKT through multiple mechanisms. Oncogene. 2013 Sep 5;32(36):4273-83.

Li HY, Li M, Luo CC, Wang JQ, Zheng N. Lactoferrin Exerts Antitumor Effects by Inhibiting Angiogenesis in a HT29 Human Colon Tumor Model. J Agric Food Chem. 2017 Dec 6;65(48):10464-10472.

Arcella A, Oliva MA, Staffieri S, Aalberti S, Grillea G, Madonna M, et al. In vitro and in vivo effect of human lactoferrin on glioblastoma growth. J Neurosurg. 2015 Oct;123(4):1026-35.

Li WY, Li QW, Han ZS, Jiang ZL, Yang H, Li J, Zhang XB. Growth suppression effects of recombinant adenovirus expressing human lactoferrin on cervical cancer in vitro and in vivo. Cancer Biother Radiopharm. 2011 Aug;26(4):477-83.

Zhou Y, Zeng Z, Zhang W, Xiong W, Wu M, Tan Y, et al. Lactotransferrin: a candidate tumor suppressor-Deficient expression in human nasopharyngeal carcinoma and inhibition of NPC cell proliferation by modulating the mitogen-activated protein kinase pathway. Int J Cancer. 2008 Nov 1;123(9):2065-72.

El-Ashmawy NE, Khedr EG, El-Kady AY, Al-Ashmawy GM. Recombinant Human Lactoferrin Augments Epirubicin Chemotherapy in Solid Ehrlich Carcinoma Bearing Mice. Curr Drug Saf. 2023;18(3):345-354.

Dong H, Yang Y, Gao C, Sun H, Wang H, Hong C, et al. Lactoferrin-containing immunocomplex mediates antitumor effects by resetting tumor-associated macrophages to M1 phenotype. J Immunother Cancer. 2020 Mar;8(1):e000339.

Zadvornyi TV, Lukianova NY, Borikun TV, Chekhun VF. Effects of exogenous lactoferrin on phenotypic profile and invasiveness of human prostate cancer cells (DU145 and LNCaP) in vitro. Exp Oncol. 2018 Oct;40(3):184-189.

Deng M, Ye Q, Qin Z, Zheng Y, He W, Tang H, et al. miR-214 promotes tumorigenesis by targeting lactotransferrin in nasopharyngeal carcinoma. Tumour Biol. 2013 Jun;34(3):1793-800.

Jonasch E, Stadler WM, Bukowski RM, Hayes TG, Varadhachary A, Malik R, et al. Phase 2 trial of talactoferrin in previously treated patients with metastatic renal cell carcinoma. Cancer. 2008 Jul 1;113(1):72-7.

Digumarti R, Wang Y, Raman G, Doval DC, Advani SH, Julka PK, et al. A randomized, double-blind, placebo-controlled, phase II study of oral talactoferrin in combination with carboplatin and paclitaxel in previously untreated locally advanced or metastatic non-small cell lung cancer. J Thorac Oncol. 2011 Jun;6(6):1098-103.

Riess JW, Bhattacharya N, Blenman KR, Neal JW, Hwang G, Pultar P, et al. Immune correlates of talactoferrin alfa in biopsied tumor of relapsed/refractory metastatic non-small cell lung cancer patients. Immunopharmacol Immunotoxicol. 2014 Apr;36(2):182-6.

Ramalingam S, Crawford J, Chang A, Manegold C, Perez-Soler R, Douillard JY, et al. Talactoferrin alfa versus placebo in patients with refractory advanced non-small-cell lung cancer (FORTIS-M trial). Ann Oncol. 2013 Nov;24(11):2875-80.

Madan RA, Tsang KY, Bilusic M, Vergati M, Poole DJ, Jochems C, et al. Effect of talactoferrin alfa on the immune system in adults with non-small cell lung cancer. Oncologist. 2013;18(7):821-2.

Parikh PM, Vaid A, Advani SH, Digumarti R, Madhavan J, Nag S, et al. Randomized, double-blind, placebo-controlled phase II study of single-agent oral talactoferrin in patients with locally advanced or metastatic non-small-cell lung cancer that progressed after chemotherapy. J Clin Oncol. 2011 Nov 1;29(31):4129-36.

Hayes TG, Falchook GS, Varadhachary A. Phase IB trial of oral talactoferrin in the treatment of patients with metastatic solid tumors. Invest New Drugs. 2010 Apr;28(2):156-62.

Published
2024/08/22
Section
Review articles