Patterns of biofilm production and antiseptic resistance in multidrug-resistant Acinetobacter baumannii clinical isolates
Abstract
Acinetobacter baumannii is a notorious pathogen known for its extensive drug resistance and ability to form biofilms, making infections difficult to treat and control. This study investigated antibiotic resistance profiles, biofilm production, and environmental adaptability of 32 A. baumannii clinical isolates. Predominantly hospital-derived, the isolates showed a high proportion of antimicrobial drug resistance, with 93.75% classified as extensively drug-resistant (XDR), and the rest as multidrug-resistant (MDR). Notably, isolates demonstrated high resistance to amikacin and meropenem (MIC50 >4096 μg/mL and 64 μg/mL, respectively). Biofilm production analysis revealed 13 strong producers, 14 moderate, 4 weak, and 1 non-producer. Strong and moderate biofilm producers exhibited higher antibiotic resistance on average. The most favorable conditions for biofilm formation proved to be in glucose-supplemented BHI and at room temperature. Six selected strong biofilm producers displayed significant variability in biofilm production across different media and temperatures. In antiseptic and topical antibiotic persistence tests, isolates showed varied survival and biofilm production, with some thriving and enhancing biofilm in saline and boric acid. The findings emphasize the adaptability and resilience of A. baumannii in clinical settings, highlighting the challenges in treating biofilm-associated infections.
References
World Health Organization. Global antimicrobial resistance surveillance system (GLASS) report: early implementation; 2020.
Garnacho-Montero J, Timsit JF. Managing Acinetobacter baumannii infections. Curr Opin Infect Dis. 2019;32(1):69-76.
Flemming HC, Wingender J, Szewzyk U, Steinberg P, Rice SA, Kjelleberg S. Biofilms: an emergent form of bacterial life. Nat Rev Microbiol. 2016;14(9):563.
Greene C, Wu J, Rickard AH, Xi C. Evaluation of the ability of Acinetobacter baumannii to form biofilms on six different biomedical relevant surfaces. Lett Appl Microbiol. 2016;63(4):233-9.
Dijkshoorn L, Nemec A, Seifert H. An increasing threat in hospitals: multidrug-resistant Acinetobacter baumannii. Nat Rev Microbiol. 2007;5(12):939-51.
Colquhoun JM, Rather PN. Insights into mechanisms of biofilm formation in Acinetobacter baumannii and implications for uropathogenesis. Front Cell Infect Microbiol. 2020;10:253.
Brauner A, Fridman O, Gefen O, Balaban NQ. Distinguishing between resistance tolerance and persistence to antibiotic treatment. Nat Rev Microbiol. 2016;14(5):320-30.
Tseng BS, Zhang W, Harrison JJ, Quach TP, Song JL, Penterman J, et al. The extracellular matrix protects Pseudomonas aeruginosa biofilms by limiting the penetration of tobramycin. Environ Microbiol. 2013;15(10):2865-78.
Lewis K. Persister cells. Annu Rev Microbiol. 2010;64:357-72.
Gil-Perotin S, Ramirez P, Marti V, Sahuquillo JM, Gonzalez E, Calleja I, et al. Implications of endotracheal tube biofilm in ventilator-associated pneumonia response: a state of concept. Crit Care. 2012;16(1):1-9.
Thompson MG, Black CC, Pavlicek RL, Honnold CL, Wise MC, Alamneh YA, et al. Validation of a novel murine wound model of Acinetobacter baumannii infection. Antimicrob Agents Chemother. 2014;58(3):1332-42.
Seifert H, Strate A, Pulverer G. Nosocomial bacteremia due to Acinetobacter baumannii. Clin features epidemiol predictors mortality. Medicine. 1995;74(6):340-9.
Wong D, Nielsen TB, Bonomo RA, Pantapalangkoor P, Luna B, Spellberg B. Clinical and pathophysiological overview of Acinetobacter infections: a century of challenges. Clin Microbiol Rev. 2017;30(1):409-47.
Peleg AY, Seifert H, Paterson DL. Acinetobacter baumannii: emergence of a successful pathogen. Clin Microbiol Rev. 2008;21(3):538-82.
Heinzel M. Phenomena of biocide resistance in microorganisms. Int Biodeterior Biodegrad. 1998;3:225-34.
Weber DJ, Rutala WA, Sickbert-Bennett EE. Outbreaks associated with contaminated antiseptics and disinfectants. Antimicrob Agents Chemother. 2007;51(12):4217-24.
Meyer B, Cookson B. Does microbial resistance or adaptation to biocides create a hazard in infection prevention and control? J Hosp Infect. 2010;76(3):200-5.
Maillard JY. Mechanisms of bacterial resistance to microbicides. In: Fraise AP, Maillard JY, Sattar SA, editors. Russell, Hugo & Ayliffe's Principles and Practice of Disinfection, Preservation and Sterilization. Chichester: Wiley-Blackwell; 2013; p. 108-20.
Harbarth S, Soh ST, Horner C, Wilcox MH. Is reduced susceptibility to disinfectants and antiseptics a risk in healthcare settings? A point/counterpoint review. J Hosp Infect. 2014;87(4):194-202.
Chen B, Han J, Dai H, Jia P. Biocide-tolerance and antibiotic-resistance in community environments and risk of direct transfers to humans: Unintended consequences of community-wide surface disinfecting during COVID-19? Environ Pollut. 2021;283:117074.
Bouvet PJM, Grimont PAD. Identification and biotyping of clinical isolates of Acinetobacter. Ann Inst Pasteur Microbiol. 1987;138(5):569-78.
Procop G, Church D, Hall G, Janda W, Koneman E, Schreckenberger P, et al. Aerobic and facultative gram positive bacilli. In Koneman's Color Atlas and textbook of Diagnostic Microbiology. 7th ed. Philadelphia, USA: Lippincott Williams and Wilkins Company; 2017; p. 385-7
The European Committee on Antimicrobial Susceptibility Testing. Breakpoint tables for interpretation of MICs and zone diameters [Internet]. Version 11.0; 2021 [cited 2024 Nov 21]. Available from: http://www.eucast.org.
Clinical and Laboratory Standards Institute (CLSI). Performance standards for antimicrobial susceptibility testing. 31st edition. CLSI; 2021. M100.
Clinical and Laboratory Standards Institute (CLSI). Methods for dilution antimicrobial susceptibility tests for bacteria that grow aerobically; approved standard - tenth edition. CLSI; 2015. M07-A10.
Clinical and Laboratory Standards Institute (CLSI). Performance standards for antimicrobial susceptibility testing: twenty-seventh informational supplement. CLSI; 2017. M100-S27.
Magiorakos AP, Srinivasan A, Carey RT, Carmeli Y, Falagas MT, Giske CT, et al. Multidrug-resistant, extensively drug-resistant and pandrug-resistant bacteria: an international expert proposal for interim standard definitions for acquired resistance. Clin Microbiol Infect. 2012;18(3):268-81.
Stepanović S, Vuković D, Hola V, Bonaventura GD, Djukić S, Ćirković I, Ruzicka F. Quantification of biofilm in microtiter plates: overview of testing conditions and practical recommendations for assessment of biofilm production by staphylococci. Apmis. 2007;115(8):891-99.
Stepanović S, Vuković D, Dakić I, Savić B, Švabić-Vlahović M. A modified microtiter-plate test for quantification of staphylococcal biofilm formation. J Microbiol Methods. 2000;40(2):175-9.
Clinical and Laboratory Standards Institute (CLSI). Methods for Determining Bactericidal Activity of Antimicrobial Agents: Approved Guideline. CLSI; 1999. M026-A.
Lukovic B, Gajic I, Dimkic I, Kekic D, Zornic S, Pozder T, et al. The first nationwide multicenter study of Acinetobacter baumannii recovered in Serbia: emergence of OXA-72, OXA-23, and NDM-1-producing isolates. Antimicrob Resist Infect Control. 2020;9:1-12.
Gajic I, Ranin L, Kekic D, Opavski N, Smitran A, Mijac V, et al. Tigecycline susceptibility of multidrug-resistant Acinetobacter baumannii from intensive care units in the western Balkans. Acta Microbiol Immunol Hung. 2020;67(3):176-181.
Vidal R, Dominguez M, Urrutia H, Bello H, Gonzalez G, Garcia A, Zemelman R. Biofilm formation by Acinetobacter baumannii. Microbios. 1996;346:49-58.
Roca Subirà I, Espinal P, Vila-Farrés X, Vila Estapé J. The Acinetobacter baumannii oxymoron: commensal hospital dweller turned pan-drug-resistant menace. Front Microbiol. 2012;3:148.
Espinal P, Marti S, Vila J. Effect of biofilm formation on the survival of Acinetobacter baumannii on dry surfaces. J Hosp Infect. 2012;80(1):56-60.
Chapartegui-González I, Lázaro-Díez M, Bravo Z, Navas J, Icardo JM, Ramos-Vivas J. Acinetobacter baumannii maintains its virulence after long-time starvation. PLoS One. 2018;13(9):e0201961
Marti S, Chabane YN, Alexandre S, Coquet L, Vila J, Jouenne T, Dé E. Growth of Acinetobacter baumannii in pellicle enhanced the expression of potential virulence factors. PLoS One. 2011;6(10):e26030.
Shenkutie AM, Yao MZ, Siu GKH, Wong BKC, Leung PHM. Biofilm-induced antibiotic resistance in clinical Acinetobacter baumannii isolates. Antibiotics. 2020;9(11):817.
Eze EC, El Zowalaty ME. Combined effects of low incubation temperature, minimal growth medium, and low hydrodynamics optimize Acinetobacter baumannii biofilm formation. Infect Drug Resist. 2019;12:3523.
Yang CH, Su PW, Moi SH, Chuang LY. Biofilm formation in Acinetobacter baumannii: genotype-phenotype correlation. Molecules. 2019;24(9):1849.
Babapour E, Haddadi A, Mirnejad R, Angaji SA, Amirmozafari N. Biofilm formation in clinical isolates of nosocomial Acinetobacter baumannii and its relationship with multidrug resistance. Asian Pac J Trop Biomed. 2016;6(6):528-33.
Rodríguez-Baño J, Martí S, Soto S, Fernández-Cuenca F, Cisneros JM, Pachón J, et al. Biofilm formation in Acinetobacter baumannii: associated features and clinical implications. Clin Microbiol Infect. 2008;14(3):276-8.
Vijayakumar S, Rajenderan S, Laishram S, Anandan S, Balaji V, Biswas I. Biofilm formation and motility depend on the nature of the Acinetobacter baumannii clinical isolates. Front Public Health. 2016;4:105.
Nucleo E, Steffanoni L, Fugazza G, Migliavacca R, Giacobone E, Navarra, A, et al. Growth in glucose-based medium and exposure to subinhibitory concentrations of imipenem induce biofilm formation in a multidrug-resistant clinical isolate of Acinetobacter baumannii. BMC Microbiol. 2009;9:1-14.
De Silva PM, Chong P, Fernando DM, Westmacott G, Kumar A. Effect of incubation temperature on antibiotic resistance and virulence factors of Acinetobacter baumannii ATCC 17978. Antimicrob Agents Chemother. 2018;62(1):e01514-17.
Tomaras AP, Dorsey CW, Edelmann RE, Actis LA. Attachment to and biofilm formation on abiotic surfaces by Acinetobacter baumannii: involvement of a novel chaperone-usher pili assembly system. Microbiology. 2003;149:3473-84.
Kröger C, Kary SC, Schauer K, Cameron AD. Genetic regulation of virulence and antibiotic resistance in Acinetobacter baumannii. Genes. 2016;8(1):12.
McConnell MJ, Actis L, Pachón J. Acinetobacter baumannii: human infections, factors contributing to pathogenesis and animal models. FEMS Microbiol Rev. 2013;37(2):130-55.
Bouvet PJM, Grimont PAD. Identification and biotyping of clinical isolates of Acinetobacter. Ann Inst Pasteur Microbiol. 1987;138(5):569-78.
Ma F, Shen C, Zheng X, Liu Y, Chen H, Zhong L, et al. Identification of a novel plasmid carrying mcr-4.3 in an Acinetobacter baumannii strain in China. Antimicrob Agents Chemother. 2019;63(12):e00133-19.
Zurawski DV, Black CC, Alamneh YA, Biggemann L, Banerjee J, Thompson MG, et al. A porcine wound model of Acinetobacter baumannii infection. Adv Wound Care. 2019;8(1):14-27.
Atiyeh BS, Dibo SA, Hayek SN. Wound cleansing, topical antiseptics and wound healing. Int Wound J. 2009;6(6):420-30.
Wisplinghoff H, Schmitt R, Wöhrmann A, Stefanik D, Seifert H. Resistance to disinfectants in epidemiologically defined clinical isolates of Acinetobacter baumannii. J Hosp Infect. 2007;66(2):174-81.
Kawamura-Sato K, Wachino JI, Kondo T, Ito H, Arakawa Y. Correlation between reduced susceptibility to disinfectants and multidrug resistance among clinical isolates of Acinetobacter species. J Antimicrob Chemother. 2010;65(9):1975-83.
Fernández-Cuenca F, Tomás M, Caballero-Moyano FJ, Bou G, Martínez-Martínez L, Vila J, et al. Reduced susceptibility to biocides in Acinetobacter baumannii: association with resistance to antimicrobials, epidemiological behaviour, biological cost and effect on the expression of genes encoding porins and efflux pumps. J Antimicrob Chemother. 2015;70(12):3222-9.
Hayashi M, Kawamura K, Matsui M, Suzuki M, Suzuki S, Shibayama K, Arakawa Y. Reduction in chlorhexidine efficacy against multi-drug-resistant Acinetobacter baumannii international clone II. J Hosp Infect. 2017;95(4):318-23.
Guo J, Li C. Molecular epidemiology and decreased susceptibility to disinfectants in carbapenem-resistant Acinetobacter baumannii isolated from intensive care unit patients in central China. J Infect Public Health. 2019;12(6):890-6.
Wainwright M. Acridine—a neglected antibacterial chromophore. J Antimicrob Chemother. 2001;47(1):1-13.
Drosou A, Falabella A, Kirsner RS. Antiseptics on wounds: an area of controversy. Wounds. 2003;15(5):149-66.
Reinhardt CS, Geske T, Schmolz M. A topical wound disinfectant (ethacridine lactate) differentially affects the production of immunoregulatory cytokines in human whole-blood cultures. Wounds. 2005;17(8):213.
Tepedelen BE, Soya E, Korkmaz M. Boric acid reduces the formation of DNA double strand breaks and accelerates wound healing process. Biol Trace Elem Res. 2016;174(2):309-18.
Infante VV, Cano AM, Valdovinos HM, Macías AE, Álvarez JA. Solución salina como medio de cultivo desde el punto de vista de las bacteriemias nosocomiales. Rev Invest Clin. 2012;64(2):120-5.
Favero MS, Carson LA, Bond WW, Petersen NJ. Pseudomonas aeruginosa: growth in distilled water from hospitals. Science. 1971;173(3999):836-8.
Kongsamran S, Dhiraputra C. The growth of Pseudomonas aeruginosa in normal saline solution and tap water. J Med Assoc Thai. 1972;55(12):736-7.
Narayanan A, Nair MS, Karumathil DP, Baskaran SA, Venkitanarayanan K, Amalaradjou MA. Inactivation of Acinetobacter baumannii biofilms on polystyrene, stainless steel, and urinary catheters by octenidine dihydrochloride. Front Microbiol. 2016;7:847.
Ivanković T, Goić-Barišić I, Hrenović J. Reduced susceptibility to disinfectants of Acinetobacter baumannii biofilms on glass and ceramic. Arh Hig Rada Toksikol. 2017;68(2):99-107.