The role of oxidative stress in male infertility: connection to sperm telomere shortening and overall DNA damage

  • Biljana Glišić Beo-Lab Plus Polyclinic, Belgrade, Serbia
  • Jelena Kotur Stevuljević University of Belgrade - Faculty of Pharmacy, Department of Medical Biochemistry, Belgrade, Serbia
Keywords: oxidative stress, telomere shortening, sperm DNA fragmentation, DNA fragmentation index

Abstract


Male infertility affects approximately 20% of men, with 30–40% of cases being linked to issues in both partners. While sperm production may be normal, DNA damage in spermatozoa can occur and become a primary cause of infertility. The exacerbation of oxidative stress leads to damage to various biomolecules, such as DNA fragmentation, lipid peroxidation, and protein oxidation, all of which can impair egg fertilization and embryo development. Elevated levels of reactive oxygen species (ROS) in semen are associated with poor sperm quality, reduced fertilization potential, and increased sperm DNA fragmentation. Additionally, shorter telomeres in semen correlate with reduced sperm vitality and function. Oxidative stress accelerates telomere attrition by inducing DNA damage, which leads to telomere shortening and potentially compromises sperm function and fertility. DNA damage can occur at different stages of spermatogenesis and fertilization. If the damage surpasses the oocyte’s repair capacity, infertility may occur. Various tests are available to assess sperm DNA damage, with the sperm DNA fragmentation (SDF) test being one of the most promising. DNA damage is quantified as the DNA fragmentation index (DFI), which represents the percentage of spermatozoa with fragmented DNA. Although reference intervals for DFI may vary depending on the method used, DFI ≤ 15% is generally considered normal, 15–30% is considered average, and DFI ≥ 30% indicates poor DNA integrity, which may negatively impact pregnancy outcomes.

References

Brannigan RE, Hermanson L, Kaczmarek J, Kim SK, Kirkby E, Tanrikut C. Updates to male infertility: AUA/ASRM Guideline (2024). J Urol. 2024;212(6):789–799. doi: 10.1097/JU.0000000000004180.

Agarwal A, Allamaneni SS. Sperm DNA damage assessment: a test whose time has come. Fertil Steril. 2005;84(4):850–3. doi: 10.1016/j.fertnstert.2005.03.080.

Esteves SC, Roque M, Bradley CK, Garrido N. Reproductive outcomes of testicular versus ejaculated sperm for ICSI among men with high levels of DNA fragmentation in semen: systematic review and meta-analysis. Fertil Steril. 2017;108(3):456–467.e1. doi: 10.1016/j.fertnstert.2017.06.018.

Fraga LG, Gismondi JP, Sanvido LV, Lozano AFQ, Teixeira TA, Hallak J. Clinical and Laboratorial Evaluation of Male Infertility. A Detailed Practical Approach. Arch Med Res. 2024 Dec;55(8):103139. doi: 10.1016/j.arcmed.2024.103139.

Salonia A, Bettocchi C, Capogrosso P, Carvalho J, Corona G, Dinkelman-Smith M, et al. EAU Guidelines on Sexual and Reproductive Health. Presented at the EAU Annual Congress, Paris; 2024.

Sikka SC, Hellstrom WJ. Current updates on laboratory techniques for the diagnosis of male reproductive failure. Asian J Androl. 2016 May–Jun;18(3):392–401. doi: 10.4103/1008-682X.179161.

WHO laboratory manual for the examination and processing of human semen, sixth edition. Geneva: World Health Organization; 2021. Licence: CC BY-NC-SA 3.0 IGO.

Leslie SW, Soon-Sutton TL, Khan MAB. Male Infertility. StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing; 2025 Jan– [cited 2024 Feb 25]. Available from: https://www.ncbi.nlm.nih.gov/books/NBK562258/.

Agarwal A, Virk G, Ong C, du Plessis SS. Effect of oxidative stress on male reproduction. World J Mens Health. 2014;32(1):1–17. doi: 10.5534/wjmh.2014.32.1.1.

Sikka SC. Oxidative stress and role of antioxidants in normal and abnormal sperm function. Front Biosci. 1996;1:e78–86. doi: 10.2741/a146.

Kaltsas A. Oxidative stress and male infertility: The protective role of antioxidants. Medicina (Kaunas). 2023;59(10):1769. doi: 10.3390/medicina59101769.

Moustakli E, Zikopoulos A, Skentou C, Katopodis P, Domali E, Potiris A, et al. Impact of reductive stress on human infertility: underlying mechanisms and perspectives. Int J Mol Sci. 2024;25(21):11802. doi: 10.3390/ijms252111802.

Yang H, Li G, Jin H, Guo Y, Sun Y. The effect of sperm DNA fragmentation index on assisted reproductive technology outcomes and its relationship with semen parameters and lifestyle. Transl Androl Urol. 2019 Aug;8(4):356–365. doi: 10.21037/tau.2019.06.22.

Agarwal A, Cho CL, Majzoub A, Esteves SC. The Society for Translational Medicine: clinical practice guidelines for sperm DNA fragmentation testing in male infertility. Transl Androl Urol. 2017 Sep;6(Suppl 4):S720–S733. doi: 10.21037/tau.2017.08.06.

Robert KA, Sharma R, Henkel R, Agarwal A. An update on the techniques used to measure oxidative stress in seminal plasma. Andrologia. 2021 Mar;53(2):e13726. doi: 10.1111/and.13726.

Mannucci A, Argento FR, Fini E, Coccia ME, Taddei N, Becatti M, Fiorillo C. The Impact of Oxidative Stress in Male Infertility. Front Mol Biosci. 2022;8:799294. doi: 10.3389/fmolb.2021.799294.

Agarwal A, Mulgund A, Hamada A, Chyatte MR. A unique view on male infertility around the globe. Reprod Biol Endocrinol. 2015;13:37. doi: 10.1186/s12958-015-0032-1.

Walke G, Gaurkar SS, Prasad R, Lohakare T, Wanjari M. The impact of oxidative stress on male reproductive function: exploring the role of antioxidant supplementation. Cureus. 2023;15(7):e42583. doi: 10.7759/cureus.42583.

Fernández de la Puente M, Valle-Hita C, Salas-Huetos A, Martínez MÁ, Sánchez-Resino E, Canudas S, et al. Sperm and leukocyte telomere length are related to sperm quality parameters in healthy men from the Led-Fertyl study. Hum Reprod Open. 2024;2024(4):hoae062. doi: 10.1093/hropen/hoae062.

Epel ES, Blackburn EH, Lin J, Dhabhar FS, Adler NE, Morrow JD, Cawthon RM. Accelerated telomere shortening in response to life stress. Proc Natl Acad Sci USA. 2004;101(49):17312–5. doi: 10.1073/pnas.0407162101.

Cawthon RM. Telomere length measurement by a novel monochrome multiplex quantitative PCR method. Nucleic Acids Res. 2009;37(3):e21. doi: 10.1093/nar/gkn1027.

Darmishonnejad Z, Zarei-Kheirabadi F, Tavalaee M, Zarei-Kheirabadi M, Zohrabi D, Nasr-Esfahani MH. Relationship between sperm telomere length and sperm quality in infertile men. Andrologia. 2020;52(5):e13546. doi: 10.1111/and.13546.

Guzonjić A, Sopić M, Ostanek B, Kotur-Stevuljević J. Telomere length as a biomarker of aging and diseases. Arch Pharm. 2022;72:105–26.

Coluzzi E, Colamartino M, Cozzi R, Leone S, Meneghini C, O'Callaghan N, Sgura A. Oxidative stress induces persistent telomeric DNA damage responsible for nuclear morphology change in mammalian cells. PLoS One. 2014;29;9(10):e110963. doi: 10.1371/journal.pone.0110963.

Garfein J, Flannagan KS, Rittman D, Ramirez-Zea M, Villamor E; Nine Mesoamerican Countries Metabolic Syndrome Study (NiMeCoMeS) Group. Leukocyte telomere length is inversely associated with a metabolic risk score in Mesoamerican children. Am J Hum Biol. 2022;34(1):e23596. doi: 10.1002/ajhb.23596.

Opuwari CS, Henkel RR. An update on oxidative damage to spermatozoa and oocytes. Biomed Res Int. 2016;2016:9540142. doi: 10.1155/2016/9540142.

Mishra S, Kumar R, Malhotra N, Singh N, Dada R. Mild oxidative stress is beneficial for sperm telomere length maintenance. World J Methodol. 2016;6(2):163–70. doi: 10.5662/wjm.v6.i2.163.

Berby B, Bichara C, Rives-Feraille A, Jumeau F, Pizio PD, Sétif V, et al. Oxidative stress is associated with telomere interaction impairment and chromatin condensation defects in spermatozoa of infertile males. Antioxidants (Basel). 2021;10(4):593. doi: 10.3390/antiox10040593.

Rocca MS, Speltra E, Menegazzo M, Garolla A, Foresta C, Ferlin A. Sperm telomere length as a parameter of sperm quality in normozoospermic men. Hum Reprod. 2016;31(6):1158–63. doi: 10.1093/humrep/dew061.

Randell Z, Dehghanbanadaki H, Fendereski K, Jimbo M, Aston K, Hotaling J. Sperm telomere length in male-factor infertility and reproduction. Fertil Steril. 2024;121(1):12–25. doi: 10.1016/j.fertnstert.2023.11.001.

Alahmar AT. Role of oxidative stress in male infertility: an updated review. J Hum Reprod Sci. 2019;12(1):4–18. doi: 10.4103/jhrs.JHRS_150_18.

Esteves SC, Zini A, Coward RM, Evenson DP, Gosálvez J, Lewis SEM, et al. Sperm DNA fragmentation testing: Summary evidence and clinical practice recommendations. Andrologia. 2021;53(2):e13874. doi: 10.1111/and.13874.

Majzoub A, Esteves SC, Gosálvez J, Agarwal A. Specialized sperm function tests in varicocele and the future of andrology laboratory. Asian J Androl. 2016;18(2):205–12. doi: 10.4103/1008-682X.172642.

Sakkas D, Alvarez JG. Sperm DNA fragmentation: mechanisms of origin, impact on reproductive outcome, and analysis. Fertil Steril. 2010;93(4):1027–36. doi: 10.1016/j.fertnstert.2009.10.046.

Martin JH, Aitken RJ, Bromfield EG, Nixon B. DNA damage and repair in the female germline: contributions to ART. Hum Reprod Update. 2019;25(2):180–201. doi: 10.1093/humupd/dmy040.

Esteves SC, Sharma RK, Gosálvez J, Agarwal A. A translational medicine appraisal of specialized andrology testing in unexplained male infertility. Int Urol Nephrol. 2014;46(6):1037–52. doi: 10.1007/s11255-014-0715-0.

Javed A, Talkad MS, Ramaiah MK. Evaluation of sperm DNA fragmentation using multiple methods: a comparison of their predictive power for male infertility. Clin Exp Reprod Med. 2019;46(1):14–21. doi: 10.5653/cerm.2019.46.1.14. Erratum in: Clin Exp Reprod Med. 2019 Dec;46(4):211. doi: 10.5653/cerm.2019.46.1.14.e1.

Yifu P, Lei Y, Shaoming L, Yujin G, Xingwang Z. Sperm DNA fragmentation index with unexplained recurrent spontaneous abortion: A systematic review and meta-analysis. J Gynecol Obstet Hum Reprod. 2020:101740. doi: 10.1016/j.jogoh.2020.101740.

Agarwal A, Majzoub A, Esteves SC, Ko E, Ramasamy R, Zini A. Clinical utility of sperm DNA fragmentation testing: practice recommendations based on clinical scenarios. Transl Androl Urol. 2016;5(6):935–950. doi: 10.21037/tau.2016.10.03.

Zhao G, Jiang X, Zheng Y, Bai H, Jiang Z, Cheng S, Li D. Outcomes comparison of testicular versus ejaculated sperm for intracytoplasmic sperm injection in infertile men with high DNA fragmentation: updated systematic review and meta-analysis. Transl Androl Urol. 2023;12(12):1785–802. doi: 10.21037/tau-23-415.

Esteves SC, Agarwal A, Cho CL, Majzoub A. A strengths-weaknesses-opportunities-threats (SWOT) analysis on the clinical utility of sperm DNA fragmentation testing in specific male infertility scenarios. Transl Androl Urol. 2017;6(4):S734–S760. doi: 10.21037/tau.2017.08.20.

Pańczyszyn A, Boniewska-Bernacka E, Wertel I, Sadakierska-Chudy A, Goc A. Telomeres and SIRT1 as biomarkers of gamete oxidative stress, fertility, and potential IVF outcome. Int J Mol Sci. 2024; 25(16):8652. doi: 10.3390/ijms25168652.

Dimitriadis F, Borgmann H, Struck JP, Salem J, Kuru TH. Antioxidant Supplementation on Male Fertility-A Systematic Review. Antioxidants (Basel). 2023 Mar 30;12(4):836. doi: 10.3390/antiox12040836.

Qamar AY, Naveed MI, Raza S, Fang X, Roy PK, Bang S, et al. Role of antioxidants in fertility preservation of sperm – A narrative review. Anim Biosci. 2023;36(3):385–403. doi: 10.5713/ab.22.0325.

Pavuluri H, Bakhtiary Z, Panner Selvam MK, Hellstrom WJG. Oxidative stress-associated male infertility: current diagnostic and therapeutic approaches. Medicina. 2024;60(6):1008. doi: 10.3390/medicina60061008.

Showell MG, Mackenzie-Proctor R, Brown J, Yazdani A, Stankiewicz MT, Hart RJ. Antioxidants for male subfertility. Cochrane Database Syst Rev. 2014;(12):CD007411.

Smits RM, Mackenzie-Proctor R, Yazdani A, Stankiewicz MT, Jordan V, Showell MG. Antioxidants for male subfertility. Cochrane Database Syst Rev. 2019;3:CD007411.

Steiner AZ, Hansen KR, Barnhart KT, Cedars MI, Legro RS, Diamond MP, et al. The effect of antioxidants on male factor infertility: the Males, Antioxidants, and Infertility (MOXI) randomized clinical trial. Fertil Steril. 2020;113:552.

Micic S, Lalic N, Djordjevic D, Bojanic N, Bogavac-Stanojevic N, Busetto GM, et al. Double-blind, randomised, placebo-controlled trial on the effect of L-carnitine and L-acetylcarnitine on sperm parameters in men with idiopathic oligoasthenozoospermia. Andrologia. 2019 Jul;51(6):e13267. doi: 10.1111/and.13267.

Published
2025/02/23
Section
Review articles