Formulation and Characterization of Vaginal Capsules and Tablets Providing Fast Release of Live Lactobacillus spp.

  • Aleksandar Aleksovski Bacthera AG, Basel, Switzerland
  • Haniehsadat Hosseini Bacthera AG, Basel, Switzerland; Institute of Pharma Technology, School of Life Sciences, University of Applied Sciences Northwestern Switzerland, Muttenz, Switzerland
  • Hajar Alkhafaji Bacthera A/S, Hørsholm, Denmark
  • Michaëla Leite Bacthera AG, Basel, Switzerland
  • Ander Sagasta Bacthera AG, Basel, Switzerland
  • Viviane Leopold Bacthera AG, Basel, Switzerland
Keywords: vaginal drug delivery, live biotherepeutic products, immediate release, capsule, tablets

Abstract


Live biotherapeutic products (LBPs) are gaining significant medical importance as a new approach in the prevention and treatment of various conditions in the female population. This study investigated the design, development, and evaluation of immediate-release (IR) vaginal dosage forms containing live Lactobacillus spp., with the aim of enabling fast and effective drug delivery in the vaginal environment. Capsule and tablet formulations were developed using different excipients and appropriate manufacturing processes (encapsulation and direct compression) and systematically evaluated for their robustness and performance. The results demonstrated that all capsule formulations exhibited suitable flowability and uniformity of dosage units, with hard gelatine capsules (HGC) providing the most favourable disintegration times compared to hydroxypropyl methylcellulose (HPMC) and pullulan capsules. Tablet formulations based on microcrystalline cellulose (MCC) achieved optimal hardness, friability, and disintegration, especially under lower compression forces, confirming MCC’s multifunctional role as a filler, binder, and disintegrant. Importantly, both dosage forms maintained Lactobacillus viability with only minor losses (~0.5 log), preserved the acidic vaginal environment (pH 4.2), and demonstrated robustness under simulated biorelevant conditions. These findings highlight that IR vaginal capsules and tablets can be effectively tailored to deliver live biotherapeutics with rapid onset of action, thereby advancing microbiome-based strategies for women’s health.

 

References

Cordaillat-Simmons M, Rouanet A, Pot B. Live biotherapeutic products: the importance of a defined regulatory framework. Exp Mol Med. 2020;52(9):1397–406. doi: 10.1038/s12276-020-0437-6.

Tseng C-H, Wong S, Yu J, Lee Y-Y, Jun T, Lai H-C, et al. Development of live biotherapeutic products: a position statement of Asia-Pacific Microbiota Consortium. Gut. 2025;74(5):334501. doi: 10.1136/gutjnl-2024-334501.

Ansari A, Son D, Hur YM, Park S, You Y-A, Kim SM, et al. Lactobacillus Probiotics Improve Vaginal Dysbiosis in Asymptomatic Women. Nutrients. 2023;15(8):1862. doi: 10.3390/nu15081862.

Lagenaur LA, Hemmerling A, Chiu C, Miller S, Lee PP, Cohen CR, Parks TP. Connecting the Dots: Translating the Vaginal Microbiome Into a Drug. J Infect Dis. 2020;223:S296–S306. doi: 10.1093/infdis/jiaa676.

Liu P, Lu Y, Li R, Chen X. Use of probiotic lactobacilli in the treatment of vaginal infections: In vitro and in vivo investigations. Front Cell Infect Microbiol. 2023;13:1153894. doi: 10.3389/fcimb.2023.1153894.

Pendharkar S, Skafte-Holm A, Simsek G, Haahr T. Lactobacilli and Their Probiotic Effects in the Vagina of Reproductive Age Women. Microorganisms. 2023;11(3):636. doi: 10.3390/microorganisms11030636.

López-Moreno A, Aguilera M. Vaginal Probiotics for Reproductive Health and Related Dysbiosis: Systematic Review and Meta-Analysis. J Clin Med. 2021;10(7):1461. doi: 10.3390/jcm10071461.

Pagar R, Deshkar S, Mahore J, Patole V, Deshpande H, Gandham N, et al. The Microbial Revolution: Unveiling the Benefits of Vaginal Probiotics and Prebiotics. Microbiol Res. 2024;286:127787. doi: 10.1016/j.micres.2024.127787.

Brunaugh AD, Smyth HDC, Williams RO. Essential Pharmaceutics. Springer: Cham; 2019; pp. 149–61. doi: 10.1007/978-3-030-31745-4_10.

Osmałek T, Froelich A, Jadach B, Tatarek A, Gadziński P, Falana A, et al. Recent Advances in Polymer-Based Vaginal Drug Delivery Systems. Pharmaceutics. 2021;13(6):884. doi: 10.3390/pharmaceutics13060884.

Owen DH, Katz DL. A vaginal fluid simulant. Contraception. 1999;59(2):91–5. doi: 10.1016/s0010-7824(99)00010-4.

Allen LV. Quality Control: Water Activity Considerations for Beyond-use Dates. Int J Pharm Compd. 2018;22(4):288–93.

Terpou A, Papadaki A, Lappa IK, Kachrimanidou V, Bosnea LA, Kopsahelis N. Probiotics in Food Systems: Significance and Emerging Strategies Towards Improved Viability and Delivery of Enhanced Beneficial Value. Nutrients. 2019;11(7):1591. doi: 10.3390/nu11071591.

SuperTab® 24AN - Anhydrous lactose [Internet]. DFE Pharma; [cited 2025 Sep 6]. Available from: https://dfepharma.com/excipients/supertab-24an.

PEARLITOL 200 SD [Internet]. Roquette; [cited 2025 Sep 6]. Available from: https://www.roquette.com/innovation-hub/pharma/product-profile-pages/pearlitol-200sd-mannitol.

Buttini F, Quarta E, Allegrini C, Lavorini F. Understanding the Importance of Capsules in Dry Powder Inhalers. Pharmaceutics. 2021;13(11):1936. doi: 10.3390/pharmaceutics13111936.

Garbacz G, Cadé D, Benameur H, Weitschies W. Bio-relevant dissolution testing of hard capsules prepared from different shell materials using the dynamic open flow through test apparatus. Eur J Pharm Sci. 2014;57:264–72. doi: 10.1016/j.ejps.2013.08.039.

Glube N, von Moos L, Duchateau G. Capsule shell material impacts the in vitro disintegration and dissolution behaviour of a green tea extract. Results Pharma Sci. 2013;3(3):1–6. doi: 10.1016/j.rinphs.2013.08.002.

Rodklongtan A, Nitisinprasert S, Chitprasert P. Antioxidant activity and the survival-enhancing effect of ascorbic acid on Limosilactobacillus reuteri KUB-AC5 microencapsulated with lactose by spray drying. LWT. 2022;164:113645. doi: 10.1016/j.lwt.2022.113645.

Zodzika J, Rezeberga D, Donders G, Vedmedovska N, Vasina O, Pundure I, et al. Impact of vaginal ascorbic acid on abnormal vaginal microflora. Arch Gynecol Obstet. 2013;288(5):1039–44. doi: 10.1007/s00404-013-2876-y.

Rowe R, Sheskey P, Owen S. Handbook of Pharmaceutical Excipients. 5th ed. London: Pharmaceutical Press; 2006.

Zhao H, Zhao L, Lin X, Shen L. An update on microcrystalline cellulose in direct compression: Functionality, critical material attributes, and co-processed excipients. Carbohydr Polym. 2022;278:118968. doi: 10.1016/j.carbpol.2021.118968.

Singhal M, Sorjonen J, Wikström H, Upadhyay P, Alhusban F, Murphy D, et al. Exploring the impact of formulation and tablet shape on tablet integrity: A comprehensive investigation using mechanical and imaging techniques. J Pharm Sci. 2025;114(7):103832. doi: 10.1016/j.xphs.2025.103832.

Suksaeree J, Monton C, Chankana N, Charoenchai L. Microcrystalline cellulose promotes superior direct compressed Boesenbergia rotunda (L.) Mansf. extract tablet properties to spray-dried rice starch and spray-dried lactose. Arab J Basic Appl Sci. 2022;30(1):13–25. doi: 10.1080/25765299.2022.2153527.

Janssen PHM, Berardi A, Kok JH, Thornton AW, Dickhoff BHJ. The impact of lactose type on disintegration: An integral study on porosity and polymorphism. Eur J Pharm Biopharm. 2022;180:251–9. doi: 10.1016/j.ejpb.2022.10.012.

Wang B, Middleton A, Gibson R, Khanolkar J, Klymenko O, Wu C-Y. Understanding lethal mechanisms and preventive strategies in probiotic tablet production – a review. Powder Technol. 2024;443:119905. doi: 10.1016/j.powtec.2024.119905.

Published
2025/12/25
Section
Original scientific paper