The morphometric-anatomical parameters of the intercondylar notch in adult knee of Serbian population

  • Dejan Jeremic University of Kragujevac, Serbia, Faculty of Medical Sciences, Department of Anatomy
  • Ivana Zivanovic-Macuzic University of Kragujevac, Serbia, Faculty of Medical Sciences, Department of Anatomy
  • Maja Vulovic University of Kragujevac, Serbia, Faculty of Medical Sciences, Department of Anatomy
  • Marija Kovacevic University of Kragujevac, Serbia, Faculty of Medical Sciences, Department of Anatomy
  • Milos Minic University of Kragujevac, Serbia, Faculty of Medical Sciences, Department of Anatomy
Keywords: intercondylar notch, anatomical parameter, adult knee, MR measurement, gender differences, Serbian population

Abstract


Objective: The aim of this investigation was to examine normal intercondylar notch morphometry in Serbian population and to determine whether there are sex differences in anatomical parameters of the intercondylar notch among asymptomatic subjects without structural change.

Method: The study included MR images of 90 patients (45 men and 45 women) receiving a 1,5-T knee scan at our radiological institute after the approval from ethics committee, which were taken in the period from 2010 to 2017. The knee was placed in neutral position, and MR images were obtained using conventional spin echo techniques. The morphology of the intercondylar notch (U- shaped and A-shaped notch) was measured for each knee.

Results: The measurements of parameters for intercondylar notch geometry were obtained by analyzing coronal MR images. U-shaped intercondylar notch was found with 46 patients (51.2%) and A-shaped intercondylar notch with 44 (48.8%). There was no significant difference in the shape incidence in Serbian population (p>0.05). According to the notch width index (NWI) and the Notch shape index (NSI) criteria, we found U-shaped intercondylar notch with 24 men and 22 women and A-shaped intercondylar notch with 23 men and 21 women. There was no significant difference in incidence between the genders (p>0.05).

Conclusion: We concluded that for all examined anatomical parameters of the intercondylar notch there were no significant differences in Serbian population. According to our findings in this study, we concluded that there was no sexual dimorphism for anatomical parameters of intercondylar notch in Serbian population.

References

1. Hirtler L, Kainberger F, Röhrich S. The intercondylar fossa-A narrative review. Clin Anat 2022; 35(1):2-14.

2. Hutchinson MR, Ireland ML. Knee injuries in female athletes. Sports Med 1995; 19(4):288-302.

3. Tanzer M, Lenczner E. The relationship of intercondylar notch size and content to notchplasty requirement in anterior cruciate ligament surgery. Arthroscopy 1990; 6(2):89-93.

4. van Eck CF, Martins CA, Vyas SM, Celentano U, van Dijk CN, Fu FH. Femoral intercondylar notch shape and dimensions in ACL-injured patients. Knee Surg Sports Traumatol Arthrosc 2010; 18(9):1257-62.

5. Al-Saeed O, Brown M, Athyal R, Sheikh M. Association of femoral intercondylar notch morphology, width index and the risk of anterior cruciate ligament injury. Knee Surg Sports Traumatol Arthrosc 2013; 21(3):678-82.

6. Balgovind SR, Raunak B, Anusree A. Intercondylar notch morphometrics in Indian population: An anthropometric study with magnetic resonance imaging analysis. J Clin Orthop Trauma 2019;10(4):702-705.

7. Tillman MD, Smith KR, Bauer JA, Cauraugh JH, Falsetti AB, Pattishall JL. Differences in three intercondylar notch geometry indices between males and females: a cadaver study. Knee 2002; 9(1):41-6.

8. Barnum MS, Boyd ED, Vacek P, Slauterbeck JR, Beynnon BD. Association of Geometric Characteristics of Knee Anatomy (Alpha Angle and Intercondylar Notch Type) With Noncontact ACL Injury. Am J Sports Med 2021; 49(10):2624-2630.

9. Bouras T, Fennema P, Burke S, Bosman H. Stenotic intercondylar notch type is correlated with anterior cruciate ligament injury in female patients using magnetic resonance imaging. Knee Surg Sports Traumatol Arthrosc 2018; 26(4):1252-1257.

10. Raja B, Marathe N, Desai J, Dahapute A, Shah S, Chavan A. Evaluation of anatomic risk factors using magnetic resonance imaging in non-contact anterior cruciate ligament injury. J Clin Orthop Trauma 2019; 10(4):710-715.

11. Fahim SM, Dhawan T, Jagadeesh N, Ashwathnarayan YP. The relationship of anterior cruciate ligament injuries with MRI based calculation of femoral notch width, notch width index, notch shape - A randomized control study. J Clin Orthop Trauma 2021;17:5-10.

12. Hirtler L, Röhrich S, Kainberger F. The Femoral Intercondylar Notch During Life: An Anatomic Redefinition With Patterns Predisposing to Cruciate Ligament Impingement. AJR Am J Roentgenol 2016; 207(4):836-845.

13. Fernández-Jaén T, López-Alcorocho JM, Rodriguez-Iñigo E, Castellán F, Hernández JC, Guillén-García P. The Importance of the Intercondylar Notch in Anterior Cruciate Ligament Tears. Orthop J Sports Med 2015; 3(8):2325967115597882.

14. Shelbourne KD, Facibene WA, Hunt JJ. Radiographic and intraoperative intercondylar notch width measurements in men and women with unilateral and bilateral anterior cruciate ligament tears. Knee Surg Sports Traumatol Arthrosc 1997; 5(4):229-33.

15. Anderson AF, Lipscomb AB, Liudahl KJ, Addlestone RB. Analysis of the intercondylar notch by computed tomography. Am J Sports Med 1987; 15(6):547-52.

16. Everhart JS, Flanigan DC, Chaudhari AM. Anteromedial ridging of the femoral intercondylar notch: an anatomic study of 170 archival skeletal specimens. Knee Surg Sports Traumatol Arthrosc 2014; 22(1):80-7.

17. Staeubli HU, Adam O, Becker W, Burgkart R. Anterior cruciate ligament and intercondylar notch in the coronal oblique plane: anatomy complemented by magnetic resonance imaging in cruciate ligament-intact knees. Arthroscopy 1999; 15(4):349-59.

18. Zeng C, Gao SG, Wei J, Yang TB, Cheng L, Luo W, et al. The influence of the intercondylar notch dimensions on injury of the anterior cruciate ligament: a meta-analysis. Knee Surg Sports Traumatol Arthrosc 2013; 21(4):804-15.

19. Li H, Zeng C, Wang Y, Wei J, Yang T, Cui Y, et al. Association Between Magnetic Resonance Imaging-Measured Intercondylar Notch Dimensions and Anterior Cruciate Ligament Injury: A Meta-analysis. Arthroscopy 2018; 34(3):889-900.

20. Tuca M, Gausden E, Luderowski E, Valderrama I, Pineda T, Potter H, et al. Stenotic Intercondylar Notch as a Risk Factor for Physeal-Sparing ACL Reconstruction Failure: A Case-Control Study. J Am Acad Orthop Surg Glob Res Rev 2021; 5(7):e21.00143.

21. Alentorn-Geli E, Pelfort X, Mingo F, Lizano-Díez X, Leal-Blanquet J, Torres-Claramunt R, et al. An Evaluation of the Association Between Radiographic Intercondylar Notch Narrowing and Anterior Cruciate Ligament Injury in Men: The Notch Angle Is a Better Parameter Than Notch Width. Arthroscopy 2015; 31(10):2004-13.

22. Anderson AF, Dome DC, Gautam S, Awh MH, Rennirt GW. Correlation of anthropometric measurements, strength, anterior cruciate ligament size, and intercondylar notch characteristics to sex differences in anterior cruciate ligament tear rates. Am J Sports Med 2001; 29(1):58-66.

23. van Kuijk KSR, Reijman M, Bierma-Zeinstra SMA, Waarsing JH, Meuffels DE. Posterior cruciate ligament injury is influenced by intercondylar shape and size of tibial eminence. Bone Joint J 2019; 101-B(9):1058-1062.

24. Fan N, Zheng YC, Zang L, Yang CG, Yuan S, Du P, et al. What is the impact of knee morphology on posterior cruciate ligament avulsion fracture in men and women: a case control study. BMC Musculoskelet Disord 2021; 22(1):100.

25. Minic M, Zivanovic-Macuzic I, Jakovcevski M, Kovacevic M, Minic S, Jeremic D. The influence of the morphometric parameters of the intercondylar notch on occurrence of meniscofemoral ligaments. Folia Morphol (Warsz) 2021 Jan 13.

26. Murshed KA, Ciçekcibaşi AE, Karabacakoğlu A, Seker M, Ziylan T. Distal femur morphometry: a gender and bilateral comparative study using magnetic resonance imaging. Surg Radiol Anat 2005; 27(2):108-12.

Published
2022/12/26
Section
Original Scientific Paper