Morfometrijsko-anatomski parametri interkondilarne jame kolena kod odraslih osoba u Srbiji

  • Dejan Jeremic University of Kragujevac, Serbia, Faculty of Medical Sciences, Department of Anatomy
  • Ivana Zivanovic-Macuzic University of Kragujevac, Serbia, Faculty of Medical Sciences, Department of Anatomy
  • Maja Vulovic University of Kragujevac, Serbia, Faculty of Medical Sciences, Department of Anatomy
  • Marija Kovacevic University of Kragujevac, Serbia, Faculty of Medical Sciences, Department of Anatomy
  • Milos Minic University of Kragujevac, Serbia, Faculty of Medical Sciences, Department of Anatomy
Ključne reči: interkondilarna jama, anatomski parametri, koleno odraslih, MR merenja, polna razlika, srpska populacija

Sažetak


Cilj ovog istraživanja je bio da ispita morfometriju interkondilarne jame srpskog stanovništva i utvrdi da li postoji polna razlika ovih anatomskih parametara kod asimptomatskih ispitanika bez strukturnih promena.

Metod: Studija je obuhvatila MR snimke 90 pacijenata (45 muškaraca i 45 žena) kojima je urađen 1,5-T snimak kolena. Snimanje je sprovedeno na našem radiološkom institutu po odobrenju etičke komisije u periodu od 2010. do 2017. godine. Kolena su snimana u neutralanom položaju, a MR slike su dobijene korišćenjem konvencionalnih spin eho tehnika. Morfologija interkondilarne jame (oblika slova U i A) je merena za svako koleno.

Rezultat: Interkondilarna jama U-oblika pronađena je kod 46 pacijenata (51,2%), a interkondilarna jama A-oblika kod 44 (48,8%). Nije bilo statistički značajne razlike u incidenciji oblika u srpskoj populaciji (p>0,05). Prema kriterijumima indeksa širine jame (NWI) i indeksa oblika jame (NSI) pronašli smo interkondilarnu jamu U-oblika kod 24 muškarca i 22 žene, a interkondilarnu jamu A-oblika kod 23 muškarca i 21 žene. Nije bilo statistički značajne razlike u incidenci između polova (p>0,05).

Zaključili smo da za ispitivane anatomske parametre interkondilarne jame nema značajnih razlika i da ne postoji polni dimorfizam oblika interkondilarne jame u srpskoj populaciji.

Reference

1. Hirtler L, Kainberger F, Röhrich S. The intercondylar fossa-A narrative review. Clin Anat 2022; 35(1):2-14.

2. Hutchinson MR, Ireland ML. Knee injuries in female athletes. Sports Med 1995; 19(4):288-302.

3. Tanzer M, Lenczner E. The relationship of intercondylar notch size and content to notchplasty requirement in anterior cruciate ligament surgery. Arthroscopy 1990; 6(2):89-93.

4. van Eck CF, Martins CA, Vyas SM, Celentano U, van Dijk CN, Fu FH. Femoral intercondylar notch shape and dimensions in ACL-injured patients. Knee Surg Sports Traumatol Arthrosc 2010; 18(9):1257-62.

5. Al-Saeed O, Brown M, Athyal R, Sheikh M. Association of femoral intercondylar notch morphology, width index and the risk of anterior cruciate ligament injury. Knee Surg Sports Traumatol Arthrosc 2013; 21(3):678-82.

6. Balgovind SR, Raunak B, Anusree A. Intercondylar notch morphometrics in Indian population: An anthropometric study with magnetic resonance imaging analysis. J Clin Orthop Trauma 2019;10(4):702-705.

7. Tillman MD, Smith KR, Bauer JA, Cauraugh JH, Falsetti AB, Pattishall JL. Differences in three intercondylar notch geometry indices between males and females: a cadaver study. Knee 2002; 9(1):41-6.

8. Barnum MS, Boyd ED, Vacek P, Slauterbeck JR, Beynnon BD. Association of Geometric Characteristics of Knee Anatomy (Alpha Angle and Intercondylar Notch Type) With Noncontact ACL Injury. Am J Sports Med 2021; 49(10):2624-2630.

9. Bouras T, Fennema P, Burke S, Bosman H. Stenotic intercondylar notch type is correlated with anterior cruciate ligament injury in female patients using magnetic resonance imaging. Knee Surg Sports Traumatol Arthrosc 2018; 26(4):1252-1257.

10. Raja B, Marathe N, Desai J, Dahapute A, Shah S, Chavan A. Evaluation of anatomic risk factors using magnetic resonance imaging in non-contact anterior cruciate ligament injury. J Clin Orthop Trauma 2019; 10(4):710-715.

11. Fahim SM, Dhawan T, Jagadeesh N, Ashwathnarayan YP. The relationship of anterior cruciate ligament injuries with MRI based calculation of femoral notch width, notch width index, notch shape - A randomized control study. J Clin Orthop Trauma 2021;17:5-10.

12. Hirtler L, Röhrich S, Kainberger F. The Femoral Intercondylar Notch During Life: An Anatomic Redefinition With Patterns Predisposing to Cruciate Ligament Impingement. AJR Am J Roentgenol 2016; 207(4):836-845.

13. Fernández-Jaén T, López-Alcorocho JM, Rodriguez-Iñigo E, Castellán F, Hernández JC, Guillén-García P. The Importance of the Intercondylar Notch in Anterior Cruciate Ligament Tears. Orthop J Sports Med 2015; 3(8):2325967115597882.

14. Shelbourne KD, Facibene WA, Hunt JJ. Radiographic and intraoperative intercondylar notch width measurements in men and women with unilateral and bilateral anterior cruciate ligament tears. Knee Surg Sports Traumatol Arthrosc 1997; 5(4):229-33.

15. Anderson AF, Lipscomb AB, Liudahl KJ, Addlestone RB. Analysis of the intercondylar notch by computed tomography. Am J Sports Med 1987; 15(6):547-52.

16. Everhart JS, Flanigan DC, Chaudhari AM. Anteromedial ridging of the femoral intercondylar notch: an anatomic study of 170 archival skeletal specimens. Knee Surg Sports Traumatol Arthrosc 2014; 22(1):80-7.

17. Staeubli HU, Adam O, Becker W, Burgkart R. Anterior cruciate ligament and intercondylar notch in the coronal oblique plane: anatomy complemented by magnetic resonance imaging in cruciate ligament-intact knees. Arthroscopy 1999; 15(4):349-59.

18. Zeng C, Gao SG, Wei J, Yang TB, Cheng L, Luo W, et al. The influence of the intercondylar notch dimensions on injury of the anterior cruciate ligament: a meta-analysis. Knee Surg Sports Traumatol Arthrosc 2013; 21(4):804-15.

19. Li H, Zeng C, Wang Y, Wei J, Yang T, Cui Y, et al. Association Between Magnetic Resonance Imaging-Measured Intercondylar Notch Dimensions and Anterior Cruciate Ligament Injury: A Meta-analysis. Arthroscopy 2018; 34(3):889-900.

20. Tuca M, Gausden E, Luderowski E, Valderrama I, Pineda T, Potter H, et al. Stenotic Intercondylar Notch as a Risk Factor for Physeal-Sparing ACL Reconstruction Failure: A Case-Control Study. J Am Acad Orthop Surg Glob Res Rev 2021; 5(7):e21.00143.

21. Alentorn-Geli E, Pelfort X, Mingo F, Lizano-Díez X, Leal-Blanquet J, Torres-Claramunt R, et al. An Evaluation of the Association Between Radiographic Intercondylar Notch Narrowing and Anterior Cruciate Ligament Injury in Men: The Notch Angle Is a Better Parameter Than Notch Width. Arthroscopy 2015; 31(10):2004-13.

22. Anderson AF, Dome DC, Gautam S, Awh MH, Rennirt GW. Correlation of anthropometric measurements, strength, anterior cruciate ligament size, and intercondylar notch characteristics to sex differences in anterior cruciate ligament tear rates. Am J Sports Med 2001; 29(1):58-66.

23. van Kuijk KSR, Reijman M, Bierma-Zeinstra SMA, Waarsing JH, Meuffels DE. Posterior cruciate ligament injury is influenced by intercondylar shape and size of tibial eminence. Bone Joint J 2019; 101-B(9):1058-1062.

24. Fan N, Zheng YC, Zang L, Yang CG, Yuan S, Du P, et al. What is the impact of knee morphology on posterior cruciate ligament avulsion fracture in men and women: a case control study. BMC Musculoskelet Disord 2021; 22(1):100.

25. Minic M, Zivanovic-Macuzic I, Jakovcevski M, Kovacevic M, Minic S, Jeremic D. The influence of the morphometric parameters of the intercondylar notch on occurrence of meniscofemoral ligaments. Folia Morphol (Warsz) 2021 Jan 13.

26. Murshed KA, Ciçekcibaşi AE, Karabacakoğlu A, Seker M, Ziylan T. Distal femur morphometry: a gender and bilateral comparative study using magnetic resonance imaging. Surg Radiol Anat 2005; 27(2):108-12.

Objavljeno
2022/12/26
Rubrika
Originalni naučni rad