Procena verovatnoće neizvršenja za privredna društva u Republici Srbiji

  • Milos Vujnovic JUBMES banka a.d. Beograd
  • Vesna Bogojevic Arsic Univerzitet u Beogradu, Fakultet organizacionih nauka
  • Nebojsa Nikolic UniCredit bank Srbija a.d.
Ključne reči: Credit risk||, ||Kreditni rizik, Probability of default||, ||Verovatnoća neizvršenja, Credit rating||, ||Kreditni rejting, Scoring model||, ||Scoring model, Rating calibration||, ||Kalibracija rejting modela,

Sažetak


U ovom radu prikazan je razvoj kvantitativnog PD modela u skladu sa standardima Bazelskog sporazma o kapitalu. Set podataka za modeliranje zasniva se na informacijama iz finansijskih izveštaja iz Republike Srbije. Cilj rada je da se razvije model kreditnog skoringa koji je sposoban da utvrdi procene PD sa visokom prediktivnom sposobnošću na osnovu uzorka privrednih društava. Modeliranje se zasniva na podacima iz godišnjih finansijskih izveštaja privrednih društava u Srbiji iz perioda od 5 godina. Pristup pondera izvesnosti (WOE) je primenjen kako bi se kvantitativno transformisala i pripremila finansijska racija. Korelaciona analiza je iskorišćena za skraćivanje dugačke liste promenjivih i za isključivanje visoko međuzavisnih promenjivih iz razvojnog i validacioniog seta podataka. U skladu sa najboljom bankarskom praksom i akademskom literaturom konačni model je dobijen korišćenjem prilagođene stepenaste logističke regresije. Konačno predložen model i njegovi konstitutivni elementi u vidu finansijskih racija obrazloženi su i upoređeni sa primerima iz relevantne akademske literature.

Biografije autora

Milos Vujnovic, JUBMES banka a.d. Beograd
Chief Executive Officer
Vesna Bogojevic Arsic, Univerzitet u Beogradu, Fakultet organizacionih nauka

Department of Financial Management,

Professor

Nebojsa Nikolic, UniCredit bank Srbija a.d.

Senior at Strategic Risk Management and Control Department

Reference

Abdou, H. A., & Pointon, J. (2011). Credit scoring, statistical techniques and evaluation criteria: a review of the literature. Intelligent Systems in Accounting, Finance and Management, 18(2-3), 59-88.

Allison, P. D. (2012). Logistic regression using SAS: Theory and application. SAS Institute.

Altman, E. (1968). Financial Ratios, Discriminant Analysis and the Prediction of Corporate Bankruptcy. Journal of Finance, 23(4)

Altman, E., & Sabato, G. (2007). Modeling Credit Risk for SMEs: Evidence from the US Market. Abacus, 43(3), 323-357.

Basel Committee on Banking Supervision Publications, Bank for International Settlement (2005), Studies on validation of internal rating systems.

Basel Committee on Banking Supervision Publications, Bank for International Settlement (2006). International convergence of capital measurement and capital standards – A revised framework.

Bijak, K., & Thomas, L. C. (2012). Does segmentation always improve model performance in credit scoring? Expert Systems with Applications, 39, 2433–2442.

Carlehed, M., & Petrov, A. (2012). A methodology for point-in-time-through-the-cycle probability of default decomposition in risk classification systems. The Journal of Risk Model Validation, 6(3), 3.

Chen, F. L., & Li, F. C. (2010). Combination of feature selection approaches with SVM in credit scoring. Expert Systems with Applications, 37(7), 4902-4909.

Fei, F., Fuertes, A. M., & Kalotychou, E. (2012). Credit rating migration risk and business cycles. Journal of Business Finance & Accounting, 39(1‐2), 229-263.

Harrell, F. (2015). Regression modeling strategies: with applications to linear models, logistic and ordinal regression, and survival analysis. Springer.

International Accounting Standards Board (2014). International Financial Reporing Standard 9 – Financial Instruments.

Jain, K., Gupta, P., & Sanjiv, M. (2011). Logistic Predictive Model for SMEs Financing in India. The Journal of Business Perspective, 15(4), 331-346.

Khemais, Z., Nesrine, D., & Mohamed, M. (2016). Credit Scoring and Default Risk Prediction: A Comparative Study between Discriminant Analysis & Logistic Regression. International Journal of Economics and Finance, 8(4), 39.

Kennedy, K., Namee, B. M., Delany, S., O’Sullivan, M., & Watson, N. (2013). A window of opportunity: Assessing behavioural scoring. Expert Systems with Applications, 40, 1372–1380.

Louzada, F., Ferreira-Silva, P. H., & Diniz, C. A. (2012). On the impact of disproportional samples in credit scoring models: An application to a Brazilian bank data. Expert Systems with Applications, 39, 8071–8078.

Malik, M., & Thomas, L. C. (2012). Transition matrix models of consumer credit ratings. International Journal of Forecasting, 28(1), 261-272.

Muminović, S., Pavlović, V., Cvijanović, J.M. (2011) Predictive ability of various bankruptcy prediction z-score models for Serbian publicly listed companies. Industrija, vol. 39, br. 3, str. 1-12

Nie, G., Rowe, W., Zhang, L., Tian, Y., & Shi, Y. (2011). Credit card churn forecasting by logistic regression and decision tree. Expert Systems with Applications, 38(12), 15273-15285.

Pavlović, V., Muminović, S., Cvijanović, J.M. (2011) Application of Sandin & Porporato's bankruptcy prediction model on Serbian companies. Industrija, vol. 39, br. 2, str. 1-13

Pluto, K., & Tasche, D. (2010). Internal-Ratings‐Based Approach. Encyclopedia of Quantitative Finance

Siddiqi, Naeem. Credit risk scorecards: developing and implementing intelligent credit scoring. Vol. 3. John Wiley & Sons, 2012.

Sohn, S. Y., & Kim, Y. S. (2012). Behavioral credit scoring model for technology-based firms that considers uncertain financial ratios obtained from relationship banking. Small Business Economics, 1-13.

Objavljeno
2017/02/20
Broj časopisa
Rubrika
Originalni naučni članak