Prediktivni hibridni sistem za berzansko tržište: Slučaj tranzitornih tržišta

  • Nebojša M. Ralević Univerzitet u Novom Sadu, Fakultet tehničkih nauka, Departman za industrijsko inženjerstvo i menadžment, Trg Dositeja Obradovića 6, 21000 Novi Sad
  • Nataša S. Glišović Državni univerzitet u Novom Pazaru, Departman za matematičke nauke
  • Vladimir Đ. Đaković Univerzitet u Novom Sadu, Fakultet tehničkih nauka
  • Goran B. Anđelić Univerzitet Edukons, Fakultet poslovne ekonomije
Ključne reči: Investments||, ||Investiranje, Prediction||, ||Predikcija, Hybrid System||, ||Hibridni sistem, Stock||, ||Akcije, Neural networks||, ||Neuralne mreže, Market||, ||Tržište,

Sažetak


Predmet istraživanja u radu jeste kreiranje i testiranje poboljšanog fuzzy neural network backpropagation modela za predikciju berzanskih indeksa, uz poređenje sa tradicionalnim neural network backpropagation modelom. Cilj istraživanja jeste dolaženje do konkretnih saznanja o mogućnostima primene poboljšanog fuzzy neural network backpropagation modela za predikciju berzanskih indeksa, sa posebnim fokusom na tranzitorna tržišta. Metodologija korišćena u radu obuhvata integraciju fuzzy-fikovanih tezina u neuro mreži. Rezultati istraživanja biće korisni kako široj investicionoj javnosti, tako i akademskoj struci, u smislu korišćenja poboljšanog modela u donošenju odluka o investiranju i unapređenju znanja u predmetnoj oblasti.

Biografije autora

Nebojša M. Ralević, Univerzitet u Novom Sadu, Fakultet tehničkih nauka, Departman za industrijsko inženjerstvo i menadžment, Trg Dositeja Obradovića 6, 21000 Novi Sad

Department of Fundamental Sciences;

Full Professor

Nataša S. Glišović, Državni univerzitet u Novom Pazaru, Departman za matematičke nauke
Teaching Assistant
Vladimir Đ. Đaković, Univerzitet u Novom Sadu, Fakultet tehničkih nauka

Department of Industrial Engineering and Management;

Assistant Professor

Goran B. Anđelić, Univerzitet Edukons, Fakultet poslovne ekonomije
Associate Professor

Reference

Casasent, D., & Natarajan, S. (1995). A classifier neural net with complex-valued weights and square-law nonlinearities. Neural Networks, 8(6), 989-998.

Cazorla, M., & Escolano, F. (2003). Two bayesian methods for junction classification, Image Processing. IEEE Transactions, 12(3), 317-327.

Cheng, L., & Liu, J. (2014). An Optimized Neural Network Classifier for Automatic Modulator Recognition. TELKOMNIKA Indonesian Journal of Electrical Engineering, 12(2), 1343-1352.

Barbounis, T. G., & Theocharis, J. B. (2007). Locally recurrent neural networks for wind speed prediction using spatial correlation. Information Sciences, 177(24), 5775-5797.

Beale, E. M. L. (1972). A derivation of conjugate gradients, in: F.A. Lootsma (Ed.), Numerical Methods for Nonlinear Optimization, Academic Press, London, 39-43.

De Wilde, O. (1997). The magnitude of the diagonal elements in neural networks. Neural Networks, 10(3), 499-504.

Draghici, S. (2002). On the capabilities of neural networks using limited precision weights. Neural Networks, 15(3), 395-414.

Feuring, T. (1996). Learning in fuzzy neural networks. IEEE International Conference, Neural Networks, 2, 1061-1066.

Fletcher, R., & Reeves, C. M. (1964). Function minimization by conjugate gradients. The Computer Journal, 7, 149-154.

Gedeon, T. (1999). Additive neural networks and periodic patterns. Neural Networks, 12(4–5), 617-626.

Hagan, M. T., Demuth, H. B., & Beale, M. H. (1996). Neural Network Design. PWS Publishing, Boston.

Ishibuchi, H., Tanaka, H., & Okada, H. (1993). Fuzzy neural networks with fuzzy weights and fuzzy biases. IEEE International Conference, Neural Networks 3, 1650-1655.

Ishibuchi, H., Morioka, K., & Tanaka, H. (1994). A fuzzy neural network with trapezoid fuzzy weights. Fuzzy Systems, IEEE World Congress on Computational Intelligence, 1, 228-233.

Islam, Md. M., & Murase, K. (2001). A new algorithm to design compact two-hidden-layer artificial neural networks. Neural Networks, 14(9), 1265-1278.

Kamarthi, S., & Pittner, S. (1999). Accelerating neural network training using weight extrapolations. Neural Networks, 12(9), 1285-1299.

Lin, C. T., & Lee, C. S. G. (1996). Neural Fuzzy Systems. Prentice Hall.

Martinez, G., Melin, P., Bravo, D., Gonzalez, F., & Gonzalez, M. (2006). Modular neural networks and fuzzy sugeno integral for face and fingerprint recognition. Applied Soft Computing Technologies, 34, 603-618.

Meltser, M., Shoham, M., & Manevitz, L. (1996). Approximating functions by neural networks: a constructive solution in the uniform norm. Neural Networks, 9(6), 965-978.

Moller, M. F. (1993). A scaled conjugate gradient algorithm for fast supervised learning. Neural Networks, 6(4), 525-533.

Neville, R. S., & Eldridge, S. (2002). Transformations of sigma–Pi nets: obtaining reflected functions by reflecting weight matrices. Neural Networks, 15(3), 375-393.

Phansalkar, V. V., & Sastry, P. S. (1994). Analysis of the back-propagation algorithm with momentum. IEEE Transactions on Neural Networks, 5(3), 505-506.

Powell, M. J. D. (1977). Restart procedures for the conjugate gradient method. Mathematical Programming, 12(1), 241-254.

Riedmiller, M., & Braun, H. (1993). A Direct Adaptive Method for Faster Backpropagation Learning: The RPROP Algorithm, In: Ruspini, H., (Ed.) Proceedings of the ICNN 93, San Francisco, 586-591.

Salazar, P. A., Melin, P., & Castillo, O. (2008). A new biometric recognition technique based on hand geometry and voice using neural networks and fuzzy logic. Soft Computing for Hybrid Intelligent Systems, 171-186.

Yam, J., & Chow, T. (2000). A weight initialization method for improving training speed in feedforward neural network. Neurocomputing, 30(1–4), 219-232.

Yeung, D. S., Chan, P. P., & Ng, W. W. (2009). Radial basis function network learning using localized generalization error bound. Information Sciences, 179(19), 3199-3217.

Objavljeno
2017/05/12
Broj časopisa
Rubrika
Originalni naučni članak