Razvoj modela za ocenu kreditne sposobnosti prema karakteristikama nacionalnog tržišnog sistema
Sažetak
Kako efikasno i efektivno plasirati kredit preduzećima, uz adekvatno povećanje stope povraćaja, i dalje predstavlja ključno pitanje svih kreditora u Republici Srbiji. Naime, domaći kreditori ili se koriste tradicionalnim metodama kreditne analize, koja zahteva velike troškove i spora je, ili primenjuju neke od svetski razvijenih modela za ocenu kreditne sposobnosti preduzeća, koje ipak nisu prilagođene karakteristikama i performansama domaćih preduzeća. Stručna i praktična stanovišta napominju da modeli za ocenu kreditne sposobnosti preduzeća kreirani za pojedinačno tržšte u znatnoj meri daju bolje rezultate od ostalih „standardizovanih modela“, te ovo predstavlja osnovnu pretpostavku i ovog istraživanja. Finansijski izveštaji domaćih preduzeća zajedno sa njihovim analitičkim pokazateljima u najboljoj meri prikazuju njihove karakteristike. Kao takvi, predstavljaju osnov za razvoj modela za ocenu kreditne sposobnosti preduzeća, što i predstavlja osnovni cilj istraživanja. Postavljena hipoteza rada je „Uvažavajući specifičnosti domaćih preduzeća moguće je razviti model za ocenu kreditne sposobnosti za Republiku Srbiju koji će biti efikasniji od opšte poznatih modela”. Rezultat istraživanja jeste model koji je moguće praktično primeniti a koji pri tome doprinosi povećanju efikasnosti prilikom donošenja odluka, i koji bi trebalo da prestavlja „conditio sine qua non” svakog kreditora u Srbiji.
Reference
Altman, E.I., & Sabato, G. (2007). Modelling Credit Risk for SMEs: Evidence from the U.S. Market. Abacus, 43(3), 332-357. doi:10.1111/j.1467-6281.2007.00234.x
Baesens, B. (2003). Developing intelligent systems for credit scoring using machine learning techniques. Leuven: K. U. Leuven. (Unpublished PhD thesis).
Dahiya, S., Handa,S.S., Singh, N.P. (2015). Credit Scoring Using Ensemle of Various Classifiers on Reduced Feature Set, Industrija, 43(4), 163-174. Retrieved from: https://scindeks-clanci.ceon.rs/data/pdf/0350-0373/2015/0350-03731504163D.pdf
Fernandes, G.B., & Artes, R. (2016). Spatial dependence in credit risk and its improvement in credit scoring. European Journal of Operational Research, 249(2), 517-524. doi:10.1016/j.ejor.2015.07.013
Caracota, R.C., Dimitru, M., & Dinu, M.R. (2010). Building a Small and Medium Enterprises. Theoretical and Applied Economics, 9(550), 117-128, retrieved from: http://www.ectap.ro/theoretical-and-applied-economics-number-9-2010/r66/.
Husein, M.F., & Pambekti, G.T. (2015). Precision of the models of Altman, Springate, Zmijewski, and Grover for predicting the financial distress. Journal of Economics, Business and Accountancy Ventura, 17(3), 405. doi:10.14414/jebav.v17i3.362
Falbo, P. (1991). Credit-scoring by enlarged discriminant models. International Journal of Management Science, 19(4), 275-289. doi:10.1016/0305-0483(91)90045-u
Feng, D., Gourieroux, C., & Jasiak, J. (2008). The ordered qualitative model for credit rating transitions. Journal of Empirical Finance, 15(1), 111-130. doi:10.1016/j.jempfin.2006.12.003
Gehrlein, W.V., & Wagner, B.J. (1997). A two-stage least cost credit scoring model. Annals of Operations Research, 74, 159-171. doi:10.1023/a:1018914219633
Gupta, J., Wilson, N., Gregoriou, A., & Healy, J. (2014). The effect of internationalisation on modelling credit risk for SMEs: Evidence from UK market. Journal of International Financial Markets, Institutions and Money, 31, 397-413. doi:10.1016/j.intfin.2014.05.001
Hayden, E. (2003). Are Credit Scoring Models Sensitive With Respect to Default Definitions? Evidence from the Austrian Market. SSRN Electronic Journal, Paper presented at the EFMA 2003 Helsinki Meetings. doi:10.2139/ssrn.407709
Ilić, M., & Saković, D. (2017). Quantitative indicators in function of company’s creditworthiness assessment. Economic Outlook, 19(2), 1-16. retrieved from: http://www.ekonomskipogledi.pr.ac.rs/.
Lessmann, S., Baesens, B., Seow, H., & Thomas, L.C. (2015). Benchmarking state-of-the-art classification algorithms for credit scoring: An update of research. European Journal of Operational Research, 247(1), 124-136. doi:10.1016/j.ejor.2015.05.030
Orgler, Y.E. (1970). A Credit Scoring Model for Commercial Loans. Journal of Money, Credit and Banking, 2(4), 435. retrieved from: https://econpapers.repec.org/scripts/redir.pf?u=http%3A%2F%2Flinks.jstor.org%2Fsici%3Fsici%3D0022-2879%2528197011%25292%253A4%253C435%253AACSMFC%253E2.0.CO%253B2-7%26origin%3Dbc;h=repec:mcb:jmoncb:v:2:y:1970:i:4:p:435-45. doi:10.2307/1991095
Sembiring, T.M. (2015). Bankruptcy Prediction Analysis of Manufacturing Companies Listed in Indonesia Stock Exchange. International Journal of Economics and Financial Issues, 5(1), 354-359. Retrieved from: http://www.econjournals.com/.
Smaranda, C. (2014). Scoring Functions and Bankruptcy Prediction Models – Case Study for Romanian Companies. Procedia Economics and Finance, 10, 217-226. doi:10.1016/s2212-5671(14)00296-2
Steenackers, A., & Goovaerts, M.J. (1989). A credit scoring model for personal loans. Insurance: Mathematics and Economics, 8(1), 31-34. doi:10.1016/0167-6687(89)90044-9
Vukadinović, P., Cerović, S., Matović V., Stevanović, G. (2018). Financial position and Credit Rating of Companies in circular Economy in Serbia, Industrija, 46(2), 77-98, retrieved from: https://scindeks-clanci.ceon.rs/data/pdf/0350-0373/2018/0350-03731802077V.pdf