THE VIBRATION REDUCTION OF CONTINUOUS MOVING LOADS ON A NONLINEAR SIMPLE BEAM RESTING ON AN ELASTIC FOUNDATION

  • Yi-Ren Wang Tamkang University, Department of Aerospace Engineering, New Taipei City, Taiwan
  • Chien-Chun Hung Tamkang University, Department of Aerospace Engineering, New Taipei City, Taiwan
  • Hsin Huang Tamkang University, Department of Aerospace Engineering, New Taipei City, Taiwan
Keywords: internal resonance, fixed points plot, vibration, dynamic vibration absorber

Abstract


This technical note investigates a hinged-hinged nonlinear Euler-Bernoulli beam resting on an elastic foundation subjects to moving loads. The method of multiple scales (MOMS) is employed to analyze this nonlinear beam model. The fixed points plots are made to identify the system’s internal resonance. The frequency ratio plot is proposed to predict the system internal resonance conditions. This study improved the author’s earlier work for a wider range of prediction on internal resonance conditions. The continuous concentrated moving loads are applied to this nonlinear beam model. The dynamic vibration absorber (DVA) is attached on the beam to reduce vibration and prevent internal resonance. The mass, spring constant and location of the DVA are studied to obtain the best damping effect on the nonlinear beam with moving loads. The results are verified by numerical results and ANSYS simulations.

References

Mundrey, J. S. (2000). Railway Track Engineering. Tata McGraw-Hill, New Delhi.

Uzzal,R.U.A.,Bhat, R. B. and Ahmed, W.(2012).Dynamic response of a beam subjected to moving load and moving mass supported by Pasternak foundation.Shock and Vibration,vol. 19, 205–220,DOI: https://doi.org/10.3233/SAV-2011-0624

SudheeshKumar,C.P., Sujatha, C. andShankar, K. (2015).Vibration of simply supported beams under a single moving load: A detailed study of cancellation phenomenon.International Journal of Mechanical Sciences,vol.99, 40-47, DOI:https://doi.org/ 10.1016/j.ijmecsci.2015.05.001

Wang, Y.R. and Kuo, T.H. (2016).Effects of a Dynamic Vibration Absorber on Nonlinear Hinged-free Beam.ASCEJournal of Engineering Mechanics,vol.142, no. 4, 25 pages, DOI:https://doi.org/10.1061/(ASCE)EM.1943-7889.0001039

Wang, Y.R. and Lu, H.C. (2017).Damping performance of dynamic vibration absorber in nonlinear simple beam with 1:3 internal resonance.InternationalJournal of Acoustics and Vibration,vol.22, no.2, 167-185, DOI:10.20855/ijav.2017.22.2462

Samani,F.S. and Pellicano, F. (2012).Vibration reduction of beams under successive traveling loads by means of linear and nonlinear dynamic absorbers.Journal of Sound and Vibration,vol. 331, no. 10, 2272-2290, DOI: https://doi.org/10.1016/j.jsv.2012.01.002

Wang, Y.R., Feng, C.K. and Chen,S.Y. (2018).Damping effects of linear and nonlinear tuned mass dampers on nonlinear hinged-hinged beam.Journal of Sound and Vibration,vol. 430, 150-173, DOI: https://doi.org/10.1016/j.jsv.2018.05.033

Wang, Y.R. and Wei, Y.H. (2020).Internal resonance analysis of a fluid-conveying tube resting on a nonlinear elastic foundation.Eur. Phys. J. Plus,vol.135, Article number 364, DOI:https://doi.org/10.1140/epjp/s13360-020-00353-4>

Nayfeh, A. H. and Mook, D. T. (1995).Ch.4 Forced Oscillations of Systems Having a Single Degree of Freedom. Nonlinear Oscillations. Wiley-Interscience, New York, p.161-257

Nayfeh, A.H. and Pai, P.F. (2004).Ch.4 Beams. Linear and Nonlinear Structural Mechanics.Wiley-Interscience Publication, New York, p.171-265.

Published
2021/11/04
Section
Short Report