SYNTHESIS, CHARACTERIZATION, AND APPLICATION OF ZnO/ZSM-5 AS CATALYST IN THE CRACKING PROCESS OF PALM METHYL ESTERS

  • Nina Haryani Universitas Sumatera Utara, Faculty of Engineering, Chemical Engineering Doctoral Program, Meda, Indonesia Universitas Sriwijaya, Faculty of Engineering, Department of Chemical Engineering, Palembang, Indonesia
  • Taslim Universitas Sumatera Utara, Faculty of Engineering, Chemical Engineering Doctoral Program, Medan, Indonesia
  • Irvan Universitas Sumatera Utara, Faculty of Engineering, Chemical Engineering Doctoral Program, Medan, Indonesia
  • Renita Manurung Universitas Sumatera Utara, Faculty of Engineering, Chemical Engineering Doctoral Program, Medan, Indonesia
  • Rondang Tambun Universitas Sumatera Utara, Faculty of Engineering, Chemical Engineering Doctoral Program, Medan, Indonesia
Keywords: ZnO/ZSM-5 catalyst, impregnation, cracking, biogasoline

Abstract


Biofuels as environmentally friendly alternative fuels such as biogasoline, biokerosene and others are generally obtained through a cracking process and take place more effectively to attend a catalyst. In this study, the synthesis of ZnO/ZSM-5 aims to obtain a catalyst that can be used in the cracking process of Palm Methyl Esters (PME) into hydrocarbon fuels especially biogasoline. This catalyst is environmentally friendly, easy to separate, has good selectivity, and can increase the conversion of cracking products. The wet impregnation method followed by drying and calcination is the method used to synthesize the catalyst. Furthermore, several analyzes were carried out to determine the characteristics of the catalyst. The analysis is the Scanning Electron Microscopy-Energy Dispersive X-Ray (SEM-EDX), X-Ray Diffraction (XRD), N2 adsorption-desorption with BET-BJH, Temperature Programmed Desorption-NH3 (TPD-NH3) and the Temperature Programmed Reduction (TPR). Based on synthesis results obtained ZnO/ZSM-5 catalyst with ZnO content of 11.77 wt%, 13.61 wt% and 18.22 wt%. The use of this catalyst in the cracking process can result in the conversion of liquid fuel by 88.57%, heavy hydrocarbon (8.57%) and gas product (2.86%).

References

Budianto, A., Prajitno, H.P.,  Roesyidi, A and  Budhikarjono, K. (2014). HZSM-5 catalyst for cracking palm oil to biodiesel : A comparative study with and without Pt and Pd impregnation. Scientific Study & Research, Chemistry & Chemical Engineering, Biotechnology, Food Industry,vol. 15,no. 1, 081-090. ISSN 1582-540X

Zandonai, C.H., Bravo, C. A.O, Fernandes-Machado, N. R. C. (2015). Biofuel production from thermocatalytic processing of vegetable oils: A review. Revista Fuentes: El Reventón Energético, vol. 13, no. 2, 83-101. DOI : http://dx.doi.org/10.18273/revfue.v13n2-2015008

Xu, J, Jiang, J and Zhao, J. (2016). Thermochemical conversion of triglycerides for production of drop-in liquid fuels. Renewable and Sustainable Energy Reviews, vol. 58,  331–340. DOI : http://dx.doi.org/10.1016/j.rser.2015.12.315

Haryani, N. Harahap, H. Taslim and Irvan. (2020). Biogasoline production via catalytic cracking using zeolite and zeolite catalyst modified with metals : A Review. 2nd Talenta Conference Engineering, Science and Technology 17 Oktober 2019,p.012051

Singh, D, Prafull P, Anuradda G, and Mahajani, S.. (2013). Esterification of Oleic Acid with Glycerol in the Presence of Supported Zinc Oxide as Catalyst. Industrial and Chemistry Research. Vol.52, 14776−14786. DOI: http://dx.doi.org/10.1021/ie401636v

Singh, Dheerendra,  Rohidas Bhoi, Anuradda Ganesh and Sanjay Mahajani. (2014). Synthesis of Biodiesel from Vegetable Oil Using Supported Metal Oxide Catalysts. Energy Fuel, vol. 28, no. 4, 2743–2753.DOI: https://doi.org/10.1021/ef500045x

Singh, Dheerendra,  Anuradda Ganesh and Sanjay Mahajani. (2014). Heterogeneous catalysis for biodiesel synthesis and valorization of glycerol. Clean Technology Environmental Policy, vol. 17, no. 4. DOI:http://doi.org/10.1007/s10098-014-0858-9

Roesyadi, A, Prajitno, D.H, Nurjannah, N, Savitri, S.D. (2013). HZSM-5 Catalyst for cracking palm oil to gasoline: A comparative study with and without Impregnation.Bulletin of Chemical Reaction Engineering & Catalysis, vol. 7, no. 3, 185 - 190. ISSN 1978-2993

Riazi, M.R, & Chiaramonti, D. (2018). Biofuels Production and Processing Technology. CRC Press, United States

Savitri, Effendi, R, Pramahan, G, Tursiloadi, S. (2015). Cracking callophylum innophylum L. oil to bio-gasoline by microporous zeolite and Al2O3 catalyst. Procedia Chemistry vol. 16, 555-562. DOI: https://doi.org/10.1016/j.proche.2015.12.092

Zhao, Xianhui, Wei, L, Cheng, S, Julson, J.(2015). Optimization of catalytic cracking process for upgrading camelina oil to hydro-carbon biofuel. Industrial Crops and Products, vol. 77, 516-526.DOI:https://doi.org/10.1016/j.indcrop.2015.09.019

Botas, J.A, Serrano, D.P, Garcí, A, De Vicente, J, Ramos, R. (2012). Catalytic conversion of rapeseed oil into raw chemicals and fuels over Ni- and Mo-modified nanocrystalline ZSM-5 zeolite. Catalysis Today,vol.195, issue 1, 59-70. DOI:  https://doi.org/10.1016/j.cattod.2012.04.061

Botas, J.A, Serrano, D.P, Garcíac, A, Ramos, A. (2014). Catalytic conversion of rapeseed oil for the production of raw chemicals, fuelsand carbon nanotubes over Ni-modified nano-crystalline and hierarchical ZSM-5. Applied Catalysis B: Environmental, vol. 145, 205– 215. DOI: https://doi.org/10.1016/j.apcatb.2012.12.023

Zandonai, C. H, Cordeiro, P.H.Y, Pergher, S.B.C, Scaliante, M.H.N.O, & Machado, R.N.C.F. (2016). Production of petroleum like synthetic fuel by hydrocracking of crude soybean oil over ZSM5 zeolite – Improvement of catalyst lifetime by ion exchange. Fuel, vol. 172, 228–237. DOI: https://doi.org/10.1016/j.fuel.2015.12.059

Nasikin, M, Susanto, B.H, Hirsaman, M.A  & Wijanarko, A . (2009). Biogasoline from Palm Oil by Simultaneous Cracking and Hydrogenation Reaction over Nimo/zeolite Catalyst. World Applied Sciences Journal 5 (Special Issue for Environment), vol. 5, 74-79. ISSN 1818-4952.

Tillotama A S, Nurjannah, and Danawati HP. (2012). Produksi biofuel dari minyak kelapa sawit dengan katalis Au/HZSM-5 dan kompositnya. JurnalTeknik ITS vol. 1, no. 1, 142.ISSN: 2301-9271

Zhao, X, Wei, L, Cheng, S, Yu, Y, Julson, J. (2015). Catalytic cracking of carinata oil for hydrocarbon biofuel over Zn/Na-ZSM-5. ASABE, no. 152182612 DOI: 10.13031/aim.20152182612

Savitri, Effendi, R and Tursiloadi, S. (2016). Cracking vegetable oil from callophylluminno phyllum L. seeds to biogasoline by Ni-Mo/Al2O3 and Ni-Mo/Zeolite as micro-porous catalysts.AIP Conference Proceedings, vol. 1712, issue 1, 050008.DOI:https://doi.org/10.1063/1.4941891

Salim, I, Trisunaryanti, W,Triyono, Arryanto, Y. (2016). Hydrocracking of coconut oil into gasoline fraction using NI/modified natural zeolite catalyst. International Journal of ChemTech Research,vol.9, no.04, 492-500. ISSN: 0974-4290

Marlinda, L, Al-Muttaqii, M Gunardi, I, Roesyadi, A, Prajitno, D.H. (2017). Hydrocracking of cerbera manghas oil with Co-Ni/HZSM-5 as double promoted catalyst. Bulletin of Chemical Reaction Engineering & Catalysis, vol. 2, no.2, 167-184. DOI: http://dx.doi.org/10.9767/bcrec.12.2.496.167-184

Widayat, Saputro, S.A, Ginting, E.M, Annisa, A.N and Satriadi, H.(2017). Biofuel production by catalytic cracking method using Zn/HZSM-5 catalyst. ARPN Journal of Engineering and Applied Sciences, vol. 12, no. 22, 11. ISSN 1819-6608

Mahajani, S.M.. Ganesh, A. Singh, D. K. Gupta, P.D. (2010). Heterogeneous acid catalyst for producing biodiesel from vegetable oils and process for the preparation thereof. Indian Pat. Appl.2134/MUM/2010

Fermoso, J. Hernando, H. Jana, P. Moreno, I. Prech, J. Hernandez, C.O. Pizarro, P. Coronado, J.M . Cejka, J. Serrano, D.P. (2016). Lamellar and pillared ZSM-5 zeolites modified with MgO and ZnO for catalytic fast-pyrolysis of eucalyptus woodchips.Catalysis Today, vol.  171, part 1, 171-181. DOI: http://dx.doi.org/10.1016/j.cattod.2015.12.009

Abdullah, Thamer.A and Zaidi, H.A. (2016). Effect of ZnO and NiO modified HZSM-5 catalyst for ethanol conversion to hydrocarbons. International Journal of Chemical Engineering and applications, vol.7, no.3, 151-155. DOI : http://dx.doi.org/10.7763/IJCEA.2016.V7.561

Yigezu, Zerihun.D. Muthukumar, Karuppan. (2014). Catalytic cracking of vegetable oil with metal oxides for biofuel production. Energy Conversion and Management, vol. 84, 326 - 333. DOI: http://dx.doi.org/10.1016/j.enconman.2014.03.084

Thommes, M, Kaneko, K, Neimark, Alexander.V, Olivier, James.P, Rodrigiez-Reinoso, F, Rouquerol, J and Sing, K.S.W. (2015). Physisorption of gases, with special reference to the evaluation of surface area and pore size distribution (IUPAC Technical Report). Pure and Applied Chemistry. (PAC-REP-14-11-17). DOI: https://doi.org/10.1515/pac-2014-1117 . IUPAC & De Gruyter

Seader, J.D. Henley, Ernest J, and Keith Roper, D.(2010).Adsorption, Ion Exchange, Chromatography, and Electrophoresis. Don Fowley, Separation Process Chemical. John Wiley & Sons, Inc, New York. p.579

FessendenFessenden & Fessenden. (1982). Kimia Organik Jilid Ketiga. Erlangga, Jakarta. P.27

Kurniawan, T. (2016). Potensi Zeolit untuk pembuatan bahan kimia dari bahan hayati, Teknik Kimia Indonesia, December Edition. IndonesianChemicalEngineers.com.

Handoko, D. S. P., Triyono., Narsito., dan Tutik Dwi Wahyuningsih. 2009. Pengaruh Temperatur terhadap Kinerja Katalis Ni/Zeolit pada Reaksi Hidrogenasi Katalitik 1-Oktadekena.Reaktor Chemical engineer Journal, vol. 1, no. 4, 218-225. DOI: https://doi.org/10.14710/reaktor.12.4.218

Jiang, F, Huang, J, Niu, L, and Xiao, G. (2018). Atomic layer deposition of ZnO thin films on ZSM-5 zeolite and its catalytics performance in chichibabin reaction. Catalysis Letter, vol.  145, 947–954. DOI: https://doi.org/10.1007/s10562-014-1472-532

Xu, J, Jiang, J dan Zhao, J. (2016). Thermochemical conversion of triglycerides for production of drop-in liquid fuels. Renewable and Sustainable Energy Reviews, vol. 8, 331-340.http://dx.doi.org/10.1016/j.rser.2015.12.315

Sadrameli, S.M and seifi, H.(2016). Improvement of renewable transportation fuel properties by deoxygenation process using thermal and catalytic cracking of triglycerides and their methyl esters. Applied Thermal Engineering, vol. 100, 1102-1110. DOI: http://dx.doi.org/doi:10.1016/j.applthermaleng.2016. 02.022

Published
2021/10/20
Section
Original Scientific Paper