First-principles generated mechanical property database for multi-component Al alloys: focusing on Al-rich corner

  • Jiong Wang Central South University

Abstract


Systematic first-principles calculations of the single crystal elastic stiffness constants (cij’s) and the polycrystalline aggregates including bulk modulus (B), shear modulus (G), Young’s modulus (E) have been performed for series binary and ternary Al compounds at 0 K. In addition, the temperature-dependent elastic properties for some technologically important phases are calculated. The cij’s are calculated by means of an efficient strain-stress method. Phonon density of states or Debye model is employed to calculate the linear thermal expansion, which is then used to calculate the temperature dependence of elastic properties. The calculated temperature-dependent elastic properties are compiled in the format of CALPHAD (CALculation of PHAse Diagram) type formula. The presently computed elastic properties for Al compounds are needed for simulation of microstructure evolution of commercial Al alloys during series of processing route.

References

L.J. Zhang, J. Wang, Y. Du, R.X. Hu, P. Nash, X.G. Lu, C. Jiang, Acta Mater., 57 (2009) 5324-5341.

J. Wang, S.L. Shang, Y. Wang, Z.G. Mei, Y.F. Liang, Y. Du, Z.K. Liu, CALPHAD, 35 (2011) 562-573.

M. Mantina, Y. Wang, L.Q. Chen, Z.K. Liu, C. Wolverton, Acta Mater., 57 (2009) 4102-4108.

S.L. Shang, H. Zhang, Y. Wang, Z.K. Liu, J. Phys-Condens. Mat., 22 (2010) 375403.

L. Kaufman, H. Bernstein, Computer Calculation of Phase Diagram, Academic Press Inc., New York, 1970.

X.G. Lu, M. Selleby, B. Sundman, CALPHAD, 29 (2005) 49-55.

J.O. Andersson, J. Ågren, J. Appl. Phys., 72 (1992) 1350-1355.

Z.K. Liu, H. Zhang, S. Ganeshan, Y. Wang, S.N. Mathaudhu, Scripta Mater., 63 (2010) 686-691.

G.E. Totten, M. D.S., Handbook of Aluminum, in, Marcel Dekker, New York, 2003.

V.S. Zolotorevsky, N.A. Belov, M.V. Glazoff, Casting Aluminum Alloys, Elsevier, Amsterdam, 2007.

L.Q. Chen, Ann. Rev. Mater. Res., 32 (2002) 113-140.

M. Born, K. Huang, Dynamical Theory of Crystal Lattices, Oxford University Press, 1988.

J.F. Nye, Physical Properties of Crystals: Their Representation by Tensors and Matrices, Oxford University Press, New York, 1985.

S.F. Pugh, Philosophical Magazine, 45 (1954) 823-843.

D.G. Clerc, H.M. Ledbetter, J. Phys. Chem. Solids, 59 (1998) 1071-1095.

P.E. Blöchl, Phys. Rev. B, 50 (1994) 17953-17979.

G. Kresse, D. Joubert, Phys. Rev. B, 59 (1999) 1758-1775.

G. Kresse, J. Furthmuller, Phys. Rev. B, 54 (1996) 11169-11186.

G. Kresse, J. Furthmuller, Comp. Mater. Sci., 6 (1996) 15-50.

J.P. Perdew, K. Burke, M. Ernzerhof, Phys. Rev. Lett., 77 (1996) 3865-3868.

M. Methfessel, A.T. Paxton, Phys. Rev. B, 40 (1989) 3616-3621.

P.E. Blöchl, O. Jepsen, O.K. Andersen, Phys. Rev. B, 49 (1994) 16223-16233.

H.J. Monkhorst, J.D. Pack, Phys. Rev. B, 13 (1976) 5188-5192.

A. van de Walle, G. Ceder, Rev. Mod. Phys., 74 (2002) 11-45.

A. van de Walle, CALPHAD, 33 (2009) 266-278.

S.L. Shang, A. Saengdeejing, Z.G. Mei, D.E. Kim, H. Zhang, S. Ganeshan, Y. Wang, Z.K. Liu, Comp. Mater. Sci., 48 (2010) 813-826.

S.L. Shang, Y. Wang, Z.K. Liu, Phys. Rev. B, 75 (2007) 024302.

Y. Le Page, P. Saxe, Phys. Rev. B, 65 (2002) 104104.

H. Ledbetter, Materials Science and Engineering a-Structural Materials Properties Microstructure and Processing, 442 (2006) 31-34.

R. Lowrie, A.M. Gonas, J. Appl. Phys., 38 (1967) 4505-4509.

O.D. Slagle, H.A. McKinstry, J. Appl. Phys., 38 (1967) 437-446.

H. Zhang, S.L. Shang, Y. Wang, A. Saengdeejing, L.Q. Chen, Z.K. Liu, Acta Mater., 58 (2010) 4012-4018.

D. Shi, B. Wen, R. Melnik, S. Yao, T. Lia, J. Solid State Chem., 182 (2009) 2664-2669.

N. Rusović, H. Warlimont, physica status solidi (a), 44 (1977) 609-619.

F.X. Kayser, C. Stassis, Phys. Status. Solidi. A, 64 (1981) 335-342.

S.V. Prikhodko, J.D. Carnes, D.G. Isaak, H. Yang, A.J. Ardell, Metall. Mater. Trans. A, 30 (1999) 2403-2408.

D.E. Kim, S.L. Shang, Z.K. Liu, Intermetallics, 18 (2010) 1163-1171.

S. Ganeshan, S.L. Shang, Y. Wang, Z.K. Liu, J. Alloy. Compd., 498 (2010) 191-198.

M.H. Yoo, Scripta Metallurgica, 20 (1986) 915-920.

D.M. Shi, B. Wen, R. Melnik, S. Yao, T.J. Lia, J. Solid State Chem., 182 (2009) 2664-2669.

N. Rusovic, H. Warlimont, Phys. Status. Solidi. A, 44 (1977) 609-619.

Y. Mishin, M.J. Mehl, D.A. Papaconstantopoulos, Phys. Rev. B, 65 (2002) 224114.

K. Tanaka, M. Koiwa, Intermetallics, 4, Supplement 1 (1996) S29-S39.

S.V. Prikhodko, H. Yang, A.J. Ardell, J.D. Carnes, D.G. Isaak, Metallurgical and Materials Transactions A, 30 2403-2408.

I. Steinbach, Phase-Field Model for Microstructure Evolution at the Mesoscopic Scale, in: D.R. Clarke (Ed.) Annual Review of Materials Research, Vol 43, Annual Reviews, Palo Alto, 2013, pp. 89-107.

Published
2016/12/31
How to Cite
Wang, J. (2016). First-principles generated mechanical property database for multi-component Al alloys: focusing on Al-rich corner. Journal of Mining and Metallurgy, Section B: Metallurgy, 53(1), 1-7. Retrieved from https://aseestant.ceon.rs/index.php/jmm/article/view/10425
Section
Original Scientific Paper