Estimating phosphate capacities of multi-component slags by mass triangle model
Abstract
Considering the importance of dephosphorization process in ironmaking and steelmaking, this paper attempted to estimate the phosphate capacities of different systems. Mass triangle model could approach the properties of multi-component systems without the parameter for every component. This present work also extended the mass triangle model to multi-component systemsApplication to three systems containing as much as seven components proved the feasibility and accuracy of this model. The calculated contour lines revealed the reasonable trend as experimental results, and calculation results for fixed compositions showed a low error rate. Scattered points calculation obtained more accurate results. Since this model can also evaluate other properties of slag, such as density, viscosity, sulphidecapcity etc., this model might shoot light on theunderstanding of various properties of multi-component slags accurately, and thus offer insight on optimization of ironmaking and steelmaking process.
Authors retain copyright of the published papers and grant to the publisher the non-exclusive right to publish the article, to be cited as its original publisher in case of reuse, and to distribute it in all forms and media.
The Author(s) warrant that their manuscript is their original work that has not been published before; that it is not under consideration for publication elsewhere; and that its publication has been approved by all co-authors, if any, as well as tacitly or explicitly by the responsible authorities at the institution where the work was carried out. The Author(s) affirm that the article contains no unfounded or unlawful statements and does not violate the rights of others. The author(s) also affirm that they hold no conflict of interest that may affect the integrity of the Manuscript and the validity of the findings presented in it. The Corresponding author, as the signing author, warrants that he/she has full power to make this grant on behalf of the Author(s). Any software contained in the Supplemental Materials is free from viruses, contaminants or worms.The published articles will be distributed under the Creative Commons Attribution ShareAlike 4.0 International license (CC BY-SA).
Authors are permitted to deposit publisher's version (PDF) of their work in an institutional repository, subject-based repository, author's personal website (including social networking sites, such as ResearchGate, Academia.edu, etc.), and/or departmental website at any time after publication.
Upon receiving the proofs, the Author(s) agree to promptly check the proofs carefully, correct any typographical errors, and authorize the publication of the corrected proofs.
The Corresponding author agrees to inform his/her co-authors, of any of the above terms.