Experimental carbothermal reduction of MgO at low pressure using concentrated solar energy

  • Jean Puig PROMES-CNRS Laboratory 7 rue du four solaire, 66120 Font-Romeu
  • Marianne Balat-Pichelin PROMES-CNRS Laboratory 7 rue du four solaire, 66120 Font-Romeu

Abstract


The improved solar reactor Sol@rmet allows to investigate the reduction of MgO in presence of carbon using concentrated solar energy in low vacuum conditions close to 900 Pa. The influence of the carbon type was studied and it was shown that a carbon issued from a biomass source was a great candidate. A gradual increase of the temperature during experiment allowed to obtain promising results. Powders with a high Mg content up to 97 wt% and a high yield rate up to 50% were collected. Short time experiments at fixed locations under the focus of the solar concentrator were performed in order to obtain information on the kinetics of the carbothermal reduction of MgO. Notably, these experiments have underlined the temperature effect on the CO emission. 50 to 80% of the CO emission mainly occurred in 100 s after the beginning of the experiments. The phase boundary reaction between MgO and C appeared to be the dominant process at the initial stage of the carbothermal reduction. Calculated activation energy of this process is around 240 kJ mol-1.

References

R. Palumbo, A. Rouanet, G. Pichelin, Energy 20 (1995) 857-868,

J. Millar, R. Palumbo, A. Rouanet, G. Pichelin, Energy 22 (1997) 301-309, http://dx.doi.org/10.1016/S0360-5442(96)00137-5.

A. Steinfeld, C. Larson, R. Palumbo, M. Foley, Energy 21 (1996) 205-222, http://dx.doi.org/10.1016/0360-5442(95)00125-5.

R. Palumbo, J. Lédé, O. Boutin, E. Elorza Ricart, A. Steinfeld, S. Möller, A. Weidenkaff, E.A. Fletcher, J. Bielicki, Chem. Eng. Sci. 53(14) (1998) 2503-2517, http://dx.doi.org/10.1016/S0009-2509(98)00063-3.

A. Steinfeld, Energy 22 (1997) 311-316, http://dx.doi.org/10.1016/S0360-5442(96)00103-X.

A. Steinfeld, P. Kuhn, A. Reller, R. Palumbo, J. Murray, Y. Tamaura, Int. J. Hydrog. Energy 23 (1998) 767-774, http://dx.doi.org/10.1016/S0360-3199(97)00135-3.

M. Epstein, G. Olalde, S. Santén, A. Steinfeld, C. Wieckert, J. Solar Energy Eng. 130(1) (2008) 014505-014505-4, http://dx.doi.org/10.1115/1.2807214.

J.M. Bergthorson, S. Goroshin, M.J. Soo, P. Julien, J. Palecka, D.L. Frost, D.J. Jarvis, Appl. Energy 160 (2015) 368-382, http://dx.doi.org/10.1016/j.apenergy.2015.09.037.

R. Lomba, S. Bernard, F. Halter, C. Chauveau, C. Mounaïm-Rousselle, P. Gillard, T. Tahtouh, O. Guézet, Proc. 53rd AIAA Aerospace Sciences Meeting – AIAA Scitech, , Kissimmee, USA, 5-9th January 2015, p. 6986-7000.

F.J. Hansgirg, Iron Age, Vol. 18, 1943, p. 56-63.

H. Li, W. Zhang, Q. Li, B. Chen, Resources, Conservation and Recycling 100 (2015) 41–48, http://dx.doi.org/10.1016/j.resconrec.2015.04.008.

G. Feng, Z. Nie, Z. Wang, X. Gong, T.A. Zuo, Mater. Sci. Forum 685 (2011) 152-160, doi: 10.4028/www.scientific.net/MSF.685.152.

M.W. Jr Chase, NIST-JANAF, Thermochemical tables, 4th edition, J. Phys. Chem. Ref. Data, Monograph n°9, 1998.

M. Halmann, A. Frei, A. Steinfeld, Min. Proc. Extract. Metall. Rev. 32 (2011) 247-266, http://dx.doi.org/10.1080/08827508.2010.530723.

J. Puig, M. Balat-Pichelin, J. Magn. Alloys 4 (2016) 140-150,

I. Vishnevetsky, M. Epstein, Solar Energy 111 (2015) 236-251,

L.H. Prentice, M.W. Nagle, Proc. Magnesium Technology 2009 (TMS), San Francisco, CA, United States, 2009, p. 35-39.

M.E. Galvez, A. Frei, G. Albisetti, G. Lunardi, A. Steinfeld, Int. J. Hydrog. Energy 33 (2008) 2880-2890, http://dx.doi.org/10.1016/j.ijhydene.2008.04.007.

L. Rongti, W. Pan, S. Masamichi, Metall. Mater. Trans. B 34 (2003) 433-437, http://dx.doi.org/doi:10.1007/s11663-003-0069-y.

W.D. Xie, J. Chen, H. Wang, X. Zhang, X.D. Peng, Y. Yang, Rare Metals 35(2) (2016) 192-197, http://dx.doi.org/doi:10.1007/s12598-014-0275-6.

R.J. Fruehan, L.J. Martonik, Metall. Mater. Trans. B 7 (1976) 537-542, http://dx.doi.org/doi:10.1007/BF02698585.

B.A. Chubukov, A.W. Palumbo, S.C. Rowe, I. Hischier, A.J. Groehn, Thermochimica Acta 636 (2016) 23-32, http://dx.doi.org/10.1016/j.tca.2016.03.035.

E.Y. Shafirovich, U.I. Goldshleger, Combustion Sci. Tech. 84 (1992) 33-43, http://dx.doi.org/doi:10.1080/00102209208951843.

G. Brooks, S. Trang, P. Witt, M.N.H. Khan, M. Nagle, JOM 58 (2006) 51-55, http://dx.doi.org/doi:10.1007/s11837-006-0024-x.

J. Engell, S. Frederiksen, K.A. Nielsen, US patent 5803947, 1998.

L.H. Prentice, M.W. Nagle, T.R.D. Barton, S. Tassios, B.T. Kuan, P.J. Witt, K.K. Constanti-Carey, Proc. Magnesium Technology 2012 (TMS), Orlando, FL, United States, 2012, p. 31-35, http://dx.doi.org/10.1007/978-3-319-48203-3_6.

I. Hischier, B.A. Chubukov, M.A. Wallace, R.P. Fisher, A.W. Palumbo, S.C. Rowe, A.J. Groehn, A.W. Weimer, Solar Energy 139 (2016) 389-397, http://dx.doi.org/10.1016/j.solener.2016.10.024.

Y.S. Touloukian, D.P. Dewitt, Thermophysical properties of matter - Thermal radiative properties - Non metallic solids, Vol. 8, Plenum: New-York, 1972.

F.H. Chung, J. Appl. Cryst. 7 (1974) 519-525,

R.L. Snyder, Powder Diffr. 7 (1992) 186-193,

N.S. Sundar Murti, V. Seshadri, Transact. Iron Steel Instit. Japan 22(12) (1982) 925-933, https://www.jstage.jst.go.jp/article/isijinternational1966/22/12/22_12_925/_pdf.

H. Ray, Kinetics of metallurgical reactions, Oxford and IBH Publishing: New Delhi, ISBN 81-0204-0747-4, 1993.

Published
2017/12/29
How to Cite
Puig, J., & Balat-Pichelin, M. (2017). Experimental carbothermal reduction of MgO at low pressure using concentrated solar energy. Journal of Mining and Metallurgy, Section B: Metallurgy, 54(1), 39-50. Retrieved from https://aseestant.ceon.rs/index.php/jmm/article/view/13189
Section
Original Scientific Paper