Electrochemical corrosion of Al-Pd alloys in HCl and NaOH solutions

  • Marián Palcut Slovak University of Technology in Bratislava, Faculty of Materials Science and Technology in Trnava
  • Libor Ďuriška Slovak University of Technology in Bratislava, Faculty of Materials Science and Technology in Trnava
  • Martin Špoták Slovak University of Technology in Bratislava, Faculty of Materials Science and Technology in Trnava
  • Michal Vrbovský Slovak University of Technology in Bratislava, Faculty of Materials Science and Technology in Trnava
  • Žaneta Gerhátová Slovak University of Technology in Bratislava, Faculty of Materials Science and Technology in Trnava
  • Ivona Černičková Slovak University of Technology in Bratislava, Faculty of Materials Science and Technology in Trnava
  • Jozef Janovec Slovak University of Technology in Bratislava

Abstract


The corrosion performance of as-solidified Al–Pd alloys in HCl and NaOH aqueous solutions is investigated in this work. Four different alloys (Al88Pd12, Al77Pd23, Al72Pd28 and Al67Pd33, element concentrations are given in at.%) were prepared from high purity Al and Pd lumps by arc–melting in Ar. Subsequently, the alloy microstructure and phase occurrence were investigated by a combination of scanning electron microscopy and room-temperature X–ray diffraction. The as-solidified Al–Pd alloys were found to consist of several single-phase microstructure constituents with various structures and chemical compositions, including structurally complex intermetallic phases. The polished surfaces of the Al–Pd alloys were subjected to electrochemical polarization in aqueous HCl and NaOH solutions (0.01 mol.dm-3) at 21±2°C. The corrosion experiments were conducted in a standard 3–electrode cell controlled by potentiostat. The corrosion potentials and corrosion current densities were determined by Tafel extrapolation of the experimental polarization curves. Phase dissolution has been observed on the alloy surfaces and some of the phases were preferentially corroded. The effects of the alloy microstructure and the phase occurrence are evaluated. The local nobility of individual intermetallic compounds is discussed. Finally, the conclusions for the alloys corrosion performance in acidic and basic solutions are provided.

Author Biographies

Marián Palcut, Slovak University of Technology in Bratislava, Faculty of Materials Science and Technology in Trnava
Libor Ďuriška, Slovak University of Technology in Bratislava, Faculty of Materials Science and Technology in Trnava
Martin Špoták, Slovak University of Technology in Bratislava, Faculty of Materials Science and Technology in Trnava
Michal Vrbovský, Slovak University of Technology in Bratislava, Faculty of Materials Science and Technology in Trnava
Žaneta Gerhátová, Slovak University of Technology in Bratislava, Faculty of Materials Science and Technology in Trnava
Ivona Černičková, Slovak University of Technology in Bratislava, Faculty of Materials Science and Technology in Trnava
Jozef Janovec, Slovak University of Technology in Bratislava

References

J. M. Dubois, Chem. Soc. Rev., 41 (2012) 6760–6777.

B. Grushko, J. Alloy. Compd., 557 (2013) 102–111.

L. Ďuriška, I. Černičková, R. Čička, J. Janovec, J. Phys. Conf. Ser., 809 (2017) 012008.

A. Smontara, I. Smiljanić, A. Bilušić, B. Grushko, S. Balanetskyy, Z. Jagličić, S. Vrtnik, J. Dolinšek, J. Alloy. Compd., 450 (2008) 92–102.

J. Hafner, M. Krajčí, Acc. Chem. Res., 47 (2014) 3378−3384.

V. A. Drozdov, P. G. Tsyrulnikov, V. V. Popovskii, N. N. Bulgakov, E. M. Moroz, T. G. Galeev, React. Kinet. Catal. Lett., 27 (1985) 425–427.

V. Johánek, I. Stará, V. Matolín, Surf. Sci. 507–510 (2002) 92–98.

K. S. Chang, X. Peng, J. Indus. Eng. Chem., 16 (2010) 455–460.

A. Lekatou, A. K. Sfikas, C. Petsa, A. E. Karantzalis, Metals, 6 (2016) 3.

M. Palcut, P. Priputen, K. Šalgó, J. Janovec, Mater. Chem. Phys., 166 (2015) 95–104.

M. Palcut, P. Priputen, M. Kusý, J. Janovec, Corros. Sci. 75 (2013) 461–466.

A. Lekatou, A. K. Sfikas, A. E. Karantzalis, D. Sioulas, Corros. Sci. 63 (2012) 193–209.

E. Huttunen–Saarivirta, T. Tiainen, Mater. Chem., Phys., 85 (2004) 383–395.

Y. Massiani, S. Ait Yaazza, J. P. Crousier, J. M. Dubois, J. Non–Cryst. Solids, 159 (1993) 92–100.

A. Rüdiger, U. Köster, J. Non–Cryst. Solids, 250–252 (1999) 898–902.

A. Beni, N. Ott, E. Ura–Bińczyk, M. Rasinski, B. Bauer, P. Gille, A. Ulrich, P. Schmutz, Electrochim. Acta, 56 (2011) 10524–10532.

E. Ura–Binczyk, N. Homazava, A. Ulrich, R. Hauert, M. Lewandowska, K. J. Kurzydlowski, Corros. Sci., 53 (2011) 1825–1837.

Q. Zhang, Z. Zhang, Phys. Chem. Chem. Phys., 12 (2010) 1453–1472.

L. Ďuriška, M. Palcut, M. Špoták, I. Černičková, J. Gondek, P. Priputen, R. Čička, D. Janičkovič, J. Janovec, Microstructure, phase occurrence and corrosion behaviour of selected Al–Pd alloys, submitted to Journal of Solid State Electrochemistry (March 1, 2017).

J. Erlebacher, M. J. Aziz, A. Karma, N. Dimitrov, K. Sieradzki, Nature, 410 (2001) 450–453.

Z. Zhang, Y. Wang, Z. Qi, W. Zhang, J. Qin, J. Frenzel, J. Phys. Chem. C 113 (2009) 12629–12636.

X. Wang, W. Wang, Z. Qi, C. Zhao, H. Ji, Z. Zhang, Electrochem. Commun. 11 (2009) 1896–1899.

B. N. Popov, Corrosion Engineering Principles and Solved Problems, Elsevier, New York, 2015, pp. 29–92.

R. G. Kelly, J. R. Scully, D. W. Shoesmith, R. G. Buchheit, Electrochemical Techniques in Corrosion Science and Engineering, Marcel Dekker, New York, 2003, pp. 29–92.

Published
2017/10/31
How to Cite
Palcut, M., Ďuriška, L., Špoták, M., Vrbovský, M., Gerhátová, Žaneta, Černičková, I., & Janovec, J. (2017). Electrochemical corrosion of Al-Pd alloys in HCl and NaOH solutions. Journal of Mining and Metallurgy, Section B: Metallurgy, 53(3), 333. Retrieved from https://aseestant.ceon.rs/index.php/jmm/article/view/13805