PHASE FIELD CRYSTAL SIMULATION OF THE STRUCTURE EVOLUTION BETWEEN THE HEXAGONAL AND SQUARE PHASES AT ELEVATED PRESSURES

  • Xiong Shuai State Key Lab of Powder Metallurgy, Central South University, China
  • Hong Mao State Key Lab of Powder Metallurgy, Central South University, China
  • Yi Kong State Key Lab of Powder Metallurgy, Central South University, China
  • Yong Du State Key Lab of Powder Metallurgy, Central South University, China

Abstract


Based on the two-mode phase field crystal (PFC) model and the principle of the common tangent, a two-dimensional PFC phase diagram is established. According to the phase diagram, the parameters for a steady growth of the hexagonal and the square phase are found. Moreover, the nucleation and growth characteristics of the square phase from hexagonal phase under different pressures are simulated by using these parameters. The movements of dislocation core under pressure at different transformation stages are revealed and compared with each other. Finally, by changing the grain orientation, the formation and disappearance of grain boundaries at different angles are simulated and analyzed.

References

L. L. Fan, Y. F. Wu, C. Si, C. W. Zou, Z. M. Qi, L. B. Li, G. Q. Pan, and Z. Y. Wu, Thin Solid Films 520, (2012) 6124–29. DOI: 10.1016/j.tsf.2012.05.086

B. Cheng, Q. Li, H. Zhang, R. Liu, B. Liu, Z. Yao, T. Cui, J. Liu, Z. Liu, and B. Sundqvist, Phys. Rev. B, 93, (2016). DOI: 10.1103/PhysRevB.93.184109

T. Uehara, The Computational Mechanics Conference, 21, (2008) 404-05.

M. Mamivand, M. A. Zaeem, and H. E. Kadiri, Acta Mater, 64, (2014) 208-19. DOI: 10.1016/j.actamat.2013.10.031

J. Wang, X. Wang, and Q. Nie, DCDS-B, 20, (2015) 3185-213. DOI: 10.1007/s11274-015-1903-5

A. Karma, and W. J. Rappel, Phys. Rev. E: Stat. Phys. Plasmas Fluids, 53, (1996) R3017. DOI: 10.1103/PhysRevE.53.R3017

G. Caginalp, and P. Fife, Phys. Rev. B: Condens. Matter, 33, (1986) 7792-94. DOI: 10.1103/PhysRevB.33.7792

V. Vaithyanathan, C. Wolverton, L. Q. Chen, Phys. Rev. Lett., 2002, 88(12):125503. DOI: 10.1103/PhysRevLett.88.125503

M. Greenwood, N. Provatas, and J. Rottler, Phys. Rev. Lett., 105, (2010) 045702. DOI: 10.1103/PhysRevLett.105.045702

M. Greenwood, N. Oforiopoku, J. Rottler, and N. Provatas, Phys. Rev. B, 84, (2011) 1787-94. DOI: 10.1103/PhysRevB.84.064104

X. Ren, J. C. Wang, Y. J. Yang, and G. C. Yang, Acta Phys. Sin., 59, (2010) 3595-600.

K. Yang, Z. Chen, W. P. Dong, Y. X. Wang, and M. Y. Zhang, Science China Technological Sciences, 54, (2011) 835-40. DOI: 10.1007/s11431-011-4301-8

Q. Zhang, J. C. Wang, Y. C. Zhang, and G. C. Yang, Acta Phys. Sin., 60, (2011):-. DOI: 10.7498/aps.60.088104

T. Yang, Z. Chen, J. Zhang, W. P. Dong, and L. Wu, Chinese Phys. Lett., 29, (2012) 078103. DOI: 10.1088/0256-307X/29/7/078103

K. A. Wu, A. Adland, and A. Karma, Phys. Rev. E: Stat., Nonlinear, Soft Matter Phys., 81, (2010) 061601. DOI: 10.1103/PhysRevE.81.061601

J. W. Cahn, and J. E. Hilliard, J. Chem. Phys., 28, (1958) 258-67. DOI: 10.1063/1.1744102

A. Jaatinen, C. V. Achim, K. R. Elder, and T. Alanissila, Phys. Rev. E: Stat., Nonlinear, Soft Matter Phys., 80, (2009) 031602. DOI: 10.1103/PhysRevE.80.031602

G. Tegze, L. Gránásy, G. I. Tóth, F. Podmaniczky, A. Jaatinen, T. Ala-Nissila, and T. Pusztai, Phys. Rev. Lett., 103, (2009) 035702. DOI: 10.1103/PhysRevLett.103.035702

P. F. Tupper, and M. Grant, Eur. Phys. Lett., 81, (2008) 40007. DOI:10.1209/0295-5075/81/40007

Published
2017/10/31
How to Cite
Shuai, X., Mao, H., Kong, Y., & Du, Y. (2017). PHASE FIELD CRYSTAL SIMULATION OF THE STRUCTURE EVOLUTION BETWEEN THE HEXAGONAL AND SQUARE PHASES AT ELEVATED PRESSURES. Journal of Mining and Metallurgy, Section B: Metallurgy, 53(3), 271. Retrieved from https://aseestant.ceon.rs/index.php/jmm/article/view/14150