Microstructure, hardness and interfacial energy in Co-9Al-10W-xNi (x=15, 25, 35 at.%) alloys during aging

  • Chao Che Central South University
  • Shenglan Yang Central South University
  • Ming Wei Central South University
  • Lijun Zhang Central South University
  • Qin Li Central South University
  • Jianbao Gao Central South University
  • Yong Du Central South University

Abstract


In the present paper, three Co-Al-W-Ni alloys (i.e., Co-9Al-10W-xNi with x=15, 25, 35 at.%) and their heat treatment mechanisms were carefully designed on the basis of the available phase equilibrium information. The temporal evolution of the microstructure and hardness in the Co-9Al-10W-xNi (x=15, 25, 30) alloys during aging process was measured, from which the effect of additional Ni contents, aging temperature and time on microstructure and hardness in the three Co-Al-W-Ni alloys was analyzed. Considering the alloy compositions and heat treatment is not directly related with the hardness, the relationship between hardness and microstructure was then linked. It was found that the hardness of Co-based superalloys increases as the volume fraction of γʹ precipitates increases, while decreases with the increase of the radius and interval of γʹ precipitates. Moreover, the interfacial energy of γ/γʹ interface was also evaluated on the basis of the coarsening kinetics of γʹ precipitates and the Philippe-Voorhees model in combination with the thermodynamic and atomic mobility databases. The results indicate that the interfacial energies of γ/γʹ phase are reduced as the increase of additional Ni content and aging temperature.

References

M. Ooshima, K. Tanaka, N. L. Okamoto, K. Kishida, H. Inui. J. Alloys Compd. , 508 (1) (2010) 71-78.

E. A. Lass, M. E. Williams, C. E. Campbell, K.-W. Moon, U. R. Kattner. J. Phase Equilib. Diffus., 35 (6) (2014) 711-723.

J. Sato, T. Omori, K. Oikawa, I. Ohnuma, R. Kainuma, K. Ishida. Science, 312 (5770) (2006) 90-91.

S. Kobayashi, Y. Tsukamoto, T. Takasugi. Intermetallics, 19 (12) (2011) 1908-1912.

M. Tsunekane, A. Suzuki, T. M. Pollock. Intermetallics, 19 (5) (2011) 636-643.

M. Chen, C.-Y. Wang. Scr. Mater. , 60 (8) (2009) 659-662.

L. Shi, J. J. Yu, C. Y. Cui, X. F. Sun. Mater. Sci. Eng., A, 635 (2015) 50-58.

T. Omori, K. Oikawa, J. Sato, I. Ohnuma, U. R. Kattner, R. Kainuma, K. Ishida. Intermetallics, 32 (2013) 274-283.

G. Feng, H. Li, S. S. Li, J. B. Sha. Scr. Mater. , 67 (5) (2012) 499-502.

K. Shinagawa, T. Omori, K. Oikawa, R. Kainuma, K. Ishida. Scr. Mater. , 61 (6) (2009) 612-615.

L. Zhang, X. Qu, M. Qin, d. Rafi ud, X. He, Y. Liu. Mater. Chem. Phys. , 136 (2-3) (2012) 371-378.

C. H. Zenk, S. Neumeier, H. J. Stone, M. Göken. Intermetallics, 55 (2014) 28-39.

K. Shinagawa, T. Omori, J. Sato, K. Oikawa, I. Ohnuma, R. Kainuma, K. Ishida. Mater. Trans. , 49 (6) (2008) 1474-1479.

F. XUE, T. MI, M. WANG, X. DING, X. LI, F. Qiang. Acta Metall. Sinica 50 (7) (2014) 845-853.

H. Y. Yan, V. A. Vorontsov, D. Dye. Intermetallics, 48 (2014) 44-53.

N. Ta, L. Zhang, Y. Tang, W. Chen, Y. Du. Surf. Coat. Technol., 216 (2015) 364-374.

M. Wei, Y. Tang, L. Zhang, W. Sun, Y. Du. Metall. Mater. Trans. A, 46 (7) (2015) 3182-3191.

X. Yang, Y. Tang, D. Cai, L. Zhang, Y. Du, S. Zhou. J. Min. Metall.Sect. B-Metall., 52 (1) (2016) 77-85.

J. Zhou, J. Zhong, L. Chen, L. Zhang, Y. Du, Z.-K. Liu, P. H. Mayrhofer. Calphad 56 (2017) 92-101.

L. Zhang, M. Stratmann, Y. Du, B. Sundman, I. Steinbach. Acta Mater. , 88 (2015) 156-169.

M. Akbarifar, M. Divandari. J. Min. Metall.Sect. B-Metall., 53 (1) (2017) 53-59.

S. Meher, S. Nag, J. Tiley, A. Goel, R. Banerjee. Acta Mater. , 61 (11) (2013) 4266-4276.

C. Woodward, A. van de Walle, M. Asta, D. R. Trinkle. Acta Mater. , 75 (2014) 60-70.

J. J. Hoyt, M. Asta, A. Karma. Phys. Rev. Lett. , 86 (24) (2001) 5530-5533.

I. M. Lifshitz, V. V. Slyozov. J. Phys. Chem. Solids 19 (1) (1961) 35-50.

C. Wagner. Z Elektrochem, 65 (1961) 581-591.

G. Kaptay. Acta Mater. , 60 (19) (2012) 6804-6813.

K. E. Yoon, R. D. Noebe, D. N. Seidman. Acta Mater. , 55 (4) (2007) 1159-1169.

J. A. Marqusee, J. Ross. The Journal of Chemical Physics, 79 (1) (1983) 373-378.

A. J. Ardell, V. Ozolins. Nat. Mater. , 4 (2005) 309-316.

T. Philippe, P. W. Voorhees. Acta Mater. , 61 (11) (2013) 4237-4244.

J. Zhu, M. S. Titus, T. M. Pollock. J. Phase Equilib. Diffus., 35 (5) (2014) 595-611.

C. E. Campbell, W. J. Boettinger, U. R. Kattner. Acta Mater. , 50 (2002) 775-792.

H. Chang, G. Xu, X.-G. Lu, L. Zhou, K. Ishida, Y. Cui. Scr. Mater. , 106 (2015) 13-16.

H. Mughrabi. Acta Mater. , 81 (2014) 21-29.

H.-Y. Yan, J. Coakley, V. A. Vorontsov, N. G. Jones, H. J. Stone, D. Dye. Mater. Sci. Eng., A, 613 (2014) 201-208.

F. Xue, H. J. Zhou, X. F. Ding, M. L. Wang, Q. Feng. Mater. Lett. , 112 (2013) 215-218.

K. Wang, M. Wei, L. Zhang, Y. Du. Metall. Mater. Trans. A, 47 (4) (2016) 1510-1516.

B. sundman, B. jansson, J.-O. Andersson. Calphad 9(2) (1985) 153-190.

C. E. Campbell, W. J. Boettinger, U. R. Kattner. Acta Mater. , 50 (4) (2002) 775-792.

L. Zhang, Q. Chen. “CALPHAD-type modeling of diffusion kinetics in multicomponent alloys”. In: Handbook of Solid State Diffusion(A. Paul and S. Divinski), Elsevier, Cambridge, 2017, p.321-362.

Published
2017/10/31
How to Cite
Che, C., Yang, S., Wei, M., Zhang, L., Li, Q., Gao, J., & Du, Y. (2017). Microstructure, hardness and interfacial energy in Co-9Al-10W-xNi (x=15, 25, 35 at.%) alloys during aging. Journal of Mining and Metallurgy, Section B: Metallurgy, 53(3), 303. Retrieved from https://aseestant.ceon.rs/index.php/jmm/article/view/14176