Coloring hot-dip galvanization of steel samples in industrial zinc-manganese baths

  • Melinda Godzsák University of Miskolc, Egyetemvaros, Miskolc
  • Gabor Levai Bay Zoltan Ltd, BAY-ENG, 2 Igloi ut, Miskolc
  • Kalman Vad Institute for Nuclear Research (MTA ATOMKI), 18/c Bem tér, Debrecen
  • Attila Csik Institute for Nuclear Research (MTA ATOMKI), 18/c Bem tér, Debrecen
  • Jozsef Hakl Institute for Nuclear Research (MTA ATOMKI), 18/c Bem tér, Debrecen
  • Tibor Kulcsar University of Miskolc, Egyetemvaros, Miskolc
  • Gyorgy Kaptay University of Miskolc, Egyetemvaros, Miskolc, 3525 Hungary, MTA-ME Research group on Materials Science, Miskolc, 3525 Hungary Bay Zoltan Ltd, BAY-ENG, 2 Igloi ut, Miskolc, 3519 Hungary

Abstract


Colored hot dip galvanization of various steel samples was realized in an industrial bath containing 738 kg of a Zn-Mn liquid alloy at 450 oC. Zinc was alloyed in three steps to reach 0.1, 0.15 and 0.2 w% of Mn in liquid zinc, and galvanization of 9 different steel samples was performed in all three baths. The obtained colors change in the sequence blue – yellow – pink – green with increasing the Mn-content of the bath and with increasing the wall thickness of the steel samples. The results are analyzed by GD-OES and SNMS techniques. It is shown that depending on the Mn-content and on the wall thickness of the steel the samples are coated by MnO of various thicknesses (in the range between 30 – 230 nm). This layer forms when the samples are removed from the Zn-Mn bath into surrounding air, before the Zn-layer is solidified. Light interference on this thin MnO layer causes the colors of the galvanized coating. Different colors are obtained in different ranges of MnO thicknesses, in accordance with the laws of optics. The minimum Mn-content of liquid Zn is found as 0.025 ± 0.010 m/m% to ensure that the original outer ZnO layer on Zn is converted into the MnO layer. This minimum critical Mn-content is in agreement with chemical thermodynamics.

References

A.R. Marder: Prog. Mater. Sci., 45 (2000) 191–271

A. Semoroz, L. Strezov, and M. Rappaz: Metall. Mater. Trans. A, 33A (2002) 695–701

A. Szabo, E. Denes: Mater. Sci. Forum 414-415 (2003) 45-50

F.M.Bellhouse, A.I.M.Mertense, J.R.McDermid: Mater. Sci. Eng. A. 463 (2007) 147-56

S.Kaboli, J.R.McDermid: Metall. Mater. Trans. A., 45A (2014) 3938 - 3953

H.Yang, S.Zhang, J.Li, Y.Liu, H.Wang: Surf. Coating Technol. 240 (2014) 269-274

S.M.A. Shibli, B.N.Meena, R.Remya: Surf. Coating Technol, 262 (2015) 210-215

G.Liu, J.Xing, S.Ma, Y.He, H.Fu, Y.Gao, Y.Wang, Y.Wang: Metall. Mater. Trans. A, 46 (2015) 1900-1907

Y.Wang, J.Zeng: Mater. Design: 69 (2015) 64-69

M.Panjan, M.Klanjsej Gunde, P.Panjan, M.Cekada: Surf. Coating Technol., 254 (2014) 65-72

J.Corredor, C.P.Bergmann, M.Pereira, L.F.P.Dick: Surf. Coating Technol. 245 (2014) 125-132.

D.P.Adams, R.D.Murphy, D.J.Saiz, D.A.Hirschfeld, M.A:Rodriguez, P.G.Kouta, B.H.Jared: Surf. Coating Technol., 248 (2014) 38-45.

R.W. Smyth: US patent 3530013, 1970

P. B. Philip, R. Zeliznak: US patent 37783l5, 1971

M.Tomita, S.Yamamoto: European patent EP0269005A2, 1987

M.Tomita, S.Yamamoto, C. Tominaga, K. Nakayama: British patent GB1243562, 1991

Q. C. Le, J.Z. Cui: Chin. J. Nonferr. Met., 8 (1998) 98 - 102

Q. C. Le, J. Z. Cui: Acta Metall. Sin., 12 (1999) 1217-22

Q. C. Le, J.Z. Cui, C.H. Hou: Chin. J. Nonferr. Met., 10 (2000) 388- 94

Q.C. Le, J.Z. Cui: Surf. Eng., 24 (2008) 57-62

G. Lévai, M. Godzsák, A. Ender, R. Márkus, T.I. Török: Mater. Sci. Forum, 729 (2013) 61-67.

Y.Wang, J.Zheng: Surf. Coating Technol., 245 (2014) 55-65

G.Lévai, M.Godzsák, T.I.Török, J.Hakl, V.Takáts, A.Csik, K.Vad, G.Kaptay. Metall Mater Trans A, 47A (2016) 3580 – 3596.

C. Burattini, L. Zortea, F. Bisegna & S. Natali. Surf Eng, 33 (2017) 460-466.

I.Barin: Thermochemical Properties of Pure Substances, VCh, 1993, in 2 parts

I. Dimov, D. Nenov, N. Gidikova, A. Mosheva: Arch. Eisenhüttenwes. 48 (1977) 209–10.

E:H. Baker: Z.MetaIlkde 71 (1980) 760–762.

F.R. deBoer, R.Boom, W.C.M.Mattens, A.R.Miedema: Cohesion in Metals, North-Holland, Amsterdam, 1988.

G.Kaptay. Calphad 28 (2004) 115-124.

G.Kaptay. Metall Mater Trans A, 43A (2012) 531-543.

G.Kaptay. Calphad 56 (2017) 169-184.

Published
2017/10/31
How to Cite
Godzsák, M., Levai, G., Vad, K., Csik, A., Hakl, J., Kulcsar, T., & Kaptay, G. (2017). Coloring hot-dip galvanization of steel samples in industrial zinc-manganese baths. Journal of Mining and Metallurgy, Section B: Metallurgy, 53(3), 319. Retrieved from https://aseestant.ceon.rs/index.php/jmm/article/view/14184