Calculated interdiffusivities resulting from different fitting functions applied to measured concentration profiles in Cu-rich fcc Cu–Ni–Sn alloys at 1073 K

  • Yuling Liu State Key Laboratory of Powder Metallurgy, Central South University, Changsha
  • Dandan Liu Institute of Electrical Engineering, Chinese Academy of Sciences, Beijing
  • Yong Du State Key Laboratory of Powder Metallurgy, Central South University, Changsha
  • Shuhong Liu State Key Laboratory of Powder Metallurgy, Central South University, Changsha
  • Dongyang Kuang Hytera Communications Corporation Limited, Shenzhen, Guangdong
  • Peng Deng State Key Laboratory of Powder Metallurgy, Central South University, Changsha
  • Jingfeng Zhang State Key Laboratory of Powder Metallurgy, Central South University, Changsha
  • Changfa Du School of Mathematics and Statistics, Central South University, Changsha
  • Zhoushun Zheng School of Mathematics and Statistics, Central South University, Changsha
  • Xuwen He Insititute of Materials, Chinese Academy of Engineering Physics, Mianyang

Abstract


Employing six groups of bulk diffusion couples together with electron probe microanalysis technique, the composition-dependences of ternary interdiffusion coefficients in Cu-rich fcc Cu–Ni–Sn alloys at 1073 K were determined via the Whittle and Green method. Different fitting functions applied to the measured concentration profiles were utilized to extract the interdiffusion coefficients of fcc Cu–Ni–Sn alloys. The errors for the obtained interdiffusivities were evaluated by a scientific method considering the error propagation. The calculated diffusion coefficients using the Boltzmann and additive Boltzmann functions were found to be with reasonable errors and show a general agreement with those using other fitting functions. Based on the Boltzmann and additive Boltzmann functions, the interdiffusivities in Cu-rich fcc Cu–Ni–Sn alloys at 1073 K were obtained and validated by thermodynamic constraints. The Boltzmann and additive Boltzmann functions were recommended to be used for the fitting of measured concentration profiles in other ternary system for the sake of extracting ternary diffusivities.

References

B.Q. Ma, J.Q. Li, Z.J. Peng, G.C. Zhang, J Alloys Compd, 535 (2012) 95-101.

J.T. Plewes, Metall Mater Trans A, 6 (3) (1975) 537.

J.C. Zhao, M.R. Notis, Acta Mater, 46 (12) (1998) 4203-4218.

M. Abtew, G. Selvaduray, Mat. Sci. Eng. R., 27 (5–6) (2000) 95-141.

K. Zeng, K.N. Tu, Mat. Sci. Eng. R., 38 (2) (2002) 55-105.

Y. Li, C.P. Wong, Mat. Sci. Eng. R., 51 (1–3) (2006) 1-35.

J. Wang, C. Leinenbach, H.S. Liu, L.B. Liu, M. Roth, Z.P. Jin, J. Phase Equilib. Diff., 31 (1) (2010) 28-33.

M.K. T. Takahashi, Shindo Gijutsu Kenkyu Kaishi 33 ( 1994) 88-101.

G.H. Cheng, M.A. Dayananda, Metall. Trans., 10A (1979) 1415-1419.

Y.H. Sohn, M.A. Dayananda, Metall Mater Trans A, 33 (11) (2002) 3375-3392.

Y. Du, B. Sundman, J. Phase Equilib. Diffus., (2017) Ahead of Print.

D.P. Whittle, A. Green, Scr. Mater., 8 (1974) 883-884.

J.S. Kirkaldy, J.E. Lane, G.R. Mason, Can J Phys, 33 (1963) 2174-2186.

J. Lechelle, S. Noyau, L. Aufore, A. Arredondo, E. Audubert, Diffus. Fundam. Org., 17 (2012) 1-39.

J. Chen, L. Zhang, J. Zhong, W. Chen, Y. Du, J Alloys Compd, 688, Part A (2016) 320-328.

J. Chen, J. Xiao, L. Zhang, Y. Du, J Alloys Compd, 657 (2016) 457-463.

R. Wang, L. Zhang, Z. Lu, Y. Du, Z. Jin, D. Živković, J. Phase Equilib. Diff., 36 (5) (2015) 510-517.

J. Li, W. Chen, D. Liu, W. Sun, L. Zhang, Y. Du, H. Xu, J. Phase Equilib. Diff., 34 (6) (2013) 484-492.

D. Liu, L. Zhang, Y. Du, H. Xu, Z. Jin, J Alloys Compd, 566 (2013) 156-163.

K. Cheng, D. Liu, L. Zhang, Y. Du, S. Liu, C. Tang, J Alloys Compd, 579 (2013) 124-131.

E. Rabkin, V.N. Semenov, A. Winkler, Acta Mater, 50 (12) (2002) 3229-3239.

D. Kuang, D. Liu, W. Chen, Z. Lu, L. Zhang, Y. Du, Z. Jin, C. Tang, Int. J. Mater. Res., 107 (7) (2016) 597-604.

K.W. Moon, C.E. Campbell, M.E. Williams, W.J. Boettinger, J. Phase Equilib. Diff., 37 (4) (2016) 402-415.

Q. Zhang, J.-C. Zhao, Intermetallics, 34 (2013) 132-141.

S.K. Kailasam, J.C. Lacombe, M.E. Glicksman, Metall Mater Trans A, 30 (10) (1999) 2605-2610.

B. Messerschmidt, B.L. McIntyre, S.N. Houde-Walter, R.R. Andre, C.H. Hsieb, Opt Mater, 7 (4) (1997) 165-171.

J. Miettinen, Calphad, 27 (3) (2003) 309-318.

Published
2017/10/31
How to Cite
Liu, Y., Liu, D., Du, Y., Liu, S., Kuang, D., Deng, P., Zhang, J., Du, C., Zheng, Z., & He, X. (2017). Calculated interdiffusivities resulting from different fitting functions applied to measured concentration profiles in Cu-rich fcc Cu–Ni–Sn alloys at 1073 K. Journal of Mining and Metallurgy, Section B: Metallurgy, 53(3), 255. Retrieved from https://aseestant.ceon.rs/index.php/jmm/article/view/14363