The role of physico-chemical properties liquid solder in reactive wetting: the Cu/SnZnIn system

  • Janusz Pstrus Institute of Metallurgy and Materials Science, Polish Academy of Sciences, 30-059 Krakow, Poland

Abstract


The measurements of surface tension, density and viscosity of liquid Sn-Zn eutectic alloys containing 0, 5, 10, 15 and 25 mole fraction of In were carried out using the sessile drop method, dilatometric technique and capillary method. The measurements were performed at temperature range 493-843 K. The technique of sessile drop was applied in the measurements of wetting angles and spreading test in the SnZnIn/ Cu system.

Surface tension, density and viscosity measurements were carried out in a protective argon-hydrogen atmosphere. Wettability tests were carried out in air in the presence of flux Alu33, at 250 ° C for 2 minutes. At the end of the study, microstructural studies were carried out on solder and the resulting joints.

Generally, the addition of In to eutectic Sn–Zn alloy improved the wetting properties and causes a reduction of thickness of the intermetallic compounds layer created at the interface between the liquid solder and the Cu substrate.

References

Directive 2002/96/WE Parlamentu Europejskiego z dnia 27 01 2003.

Directive 2003/108/WE Parlamentu Europejskiego z dnia 08 12 2003.

Directive 2008/35/WE Parlamentu Europejskiego z dnia 11 03 2008.

S. Vaynman, G. Ghosh, M.E. Fine, Mater. Trans., 45 (2004) 630-636.

J. Villain, W. Jillck, E. Schmitt, T. Qasim, Proceedings of the 2004 International IEEE Conference on the Asian Green Electronics, AGEC (IEEE Cat. No. 04EX769), (2004) 38-41.

Z. Moser, W. Gąsior, J. Pstruś, S. Księżarek, J. Electron. Mater., 31 (2002) 1225-1229.

L. Zhang, S. Xue, L. Gao, Z. Sheng, H. Ye, Z. Xiao, F. Zeng, Y. Chen, S. Yu, J. Mater. Sci., Mater. Electron. 21 (2010) 1-15.

G. Ren, I. J. Wilding, M. N. Collins, J. Alloys Compd. 665 (2016) 251-260.

36.Ganesan S., Pecht M., Lead-free Electronics ,Wiley-Interscience , (2006).

M. McCormack , S. Jin, J. Electron. Mater., 23 (1994) 635-640.

M. McCormack, S. Jin, J. Electron. Mater., 23 (1994) 715-720.

R.K. Shiue, L.W. Tsay, C.L. Lin, J.L. Ou, Microelectron. Reliab. 43 (2003) 453-463.

Hwang .J.S, Lead-free Implementation and Production, A Manufacturing Guide, McGraw-Hill, 2005,

P. Sebo, P.Stefanik, Kovove Mater., 43 (2005) 202-209.

T. Takemoto, M. Miyazaki, Mater. Trans. 42, (2001) 745-750.

P. Fima, T. Gancarz, J. Pstrus, K. Bukat, J. Sitek, Sold. Surf. Mt. Techn, 24 (2012) 71.

U.S. Mohanty, K.L. Lin, Corros. Sci. 49 7 (2007) 2815–2831.

J.X. Jiang, J.E. Lee, K.S. Kim, K. Suganuma, J. Alloys Compd. 462 (2008) 244–251.

X.J. Wang, Q.S. Zhu, B. Liu, N. Liu, F. J. Wang, J. Mater. Sci. Mater. Electron. 25(5) (2014) 2297–2304.

L. Zhang, L. Sun, Y.H. Guo, J. Mater. Sci. Mater. Electron. 25(3) (2014) 1209–1213.

Y. Xie, H. Schicketanz, A. Mikura, Ber. Bunssenges. Phys. Chem., 102 (1998) 1334.

Vaynman S., Fine M.E., Scripta Mater., 41, (1999), 1269.

Y.Cui, X.J. Liu, I. Ohnuma, R.Kainuma, H. Ohtani, J. Alloys Compd., 320(2001)234.

Z. Moser, Z. MetaIlkd. 65 (1974) 106–111.

C.K. Behera, A. Sonaye, Thermochimica Acta 568 (2013) 196–203.

X. Chen, , A.Hu, M. Li, D. Ma, J. Alloys Compd., 460 1–2 ( 2008) 478–484.

G. Ren, M. N. Collins, Mater. Des. 119 (2017) 133–140.

P. Fima, T. Gancarz, J. Pstruś, A. Sypień, J. Mater. Eng. Perform., 5 (2012) 595-598

M.L. Huang, Z.J. Zhang, N. Zhao, Q. Zhou, Scr. Mater. 68(11) (2013) 853–856.

Y. Yao, X. Feng, Z. Jian, F. Zhanying, C. Xu, J. Mater. Eng. Perform, 24 (2015) 2908–2916.

F. Xing, J. Yao, J. Liang, X. Qiu, J. Alloys Compd., 649 (2015) 1053-1059.

H. Ye, S.B. Xue, J.D. Luo, Y. Li, Mater. Des. 46 (2013) 816-823.

N.F. Dorsey, J. Wash. Acad. Sci., 18 (1928) 505-509.

J. Pstruś, P. Fima, T. Gancarz, J. Mater. Eng. Perform., 5 21 (2012) 606-613.

T.Gancarz, Z. Moser, W. Gąsior, J. Pstruś, H.Henein, Int. J. Thermophys., 30 (2011) 1210-1233.

W. Gasior, Z. Moser, J. Pstrus, J. Phase Equilib. Diffus., 19 (1998) 234–238.

W. Gąsior, Z. Moser, J. Pstruś, J. Phase Equilib. Diffus., 24 (6) (2003) 504-510.

B.J. Lee, C.S. Oh, J.H. Shin, J. Electron. Mater., 25 (1996) 983.

C.C. Jain, S.S. Wang, K.W. Huang, T.H. Chuang, J. Mater. Eng. Perform., 18 (2009) 211–215.

H.-M. Wu, F.-C. Wu, T.-H. Chuang, J. Electron. Mater., 34 (2005) 1385–1390.

T. H. Chuang, K.W. Huang, and W.H. Lin, J. Electron. Mater., 33 (2004) 374-380.

J. Pstruś, Physico-Chemical Properties of New Solder Alloys on Example of Sn-Zn-In System, Ph.D. Thesis, Krakow, 2008

T. Gancarz, J. Pstruś, W. Gąsior, H. Henein, J. Electron. Mater., 42 2 (2013) 288-293.

D. Yagodin, V. Sidorov, D. Janickovic, P. Svec, J. Non-Cryst. Solids, 358 (2012) 2935

K.Bukat, Z.Moser, J.Sitek, W.Gąsior, M.Kościelski, J.Pstruś, Solder. Surf. Mt Tech., 22 (2010) 10-16.

Z. Moser, W. Gąsior, J. Pstruś, I. Kaban, W. Hoyer, Int. J. Thermophys., 30 (2009) 1811-1822.

J. Pstrus,´ Z. Moser, W. Gasior, ˛ App. Surf. Scie., 257 (2011) 3867

J. Pigozin, R. Diefel, Chimiczeskaja tiermodinamika, Nowosibirsk 1966.(in Russian)

M.E. Loomans, S. Vaynman, G. Ghosh, M.E. Fine, J. Elec. Mat. 23(8)(1994)741.

W. Gąsior, Z. Moser , J. Pstruś, M. Kucharski, Arch. Metall. Mater., 46 (2001) 23-32

T. Sato and S. Munakata, Bull. Res. Inst. Miner. Dress. Metall. 11 (1955) 183

A.F. Crawley, Metall. Trans., 3 (1972) 157,

Yu. Plevachuk, V. Sklyarchuk, P. Svec Sr, P. Svec, D. Janickovic, E. Illekova, A. Yakymovych, J. Mater. Sci: Mater. Electron., 28 (2017) 750–759

D.R Frear, W.B. Jones, K.R.Kinsman, A TMS Publication; (1991)1–104,

C.S. Lee and F.S. Shieu, J. Electron. Mater., 35 (2006) 1660-1666

Bartell F.E.,Osterhof H.J., Koloid Symposium Momograph, New York, 1928, The Chemical Catalog Co., Ins, 113,

W.R. Tyson, W.A. Miller, Surf. Sci., 62 (1977) 267.

Published
2017/10/31
How to Cite
Pstrus, J. (2017). The role of physico-chemical properties liquid solder in reactive wetting: the Cu/SnZnIn system. Journal of Mining and Metallurgy, Section B: Metallurgy, 53(3), 309. Retrieved from https://aseestant.ceon.rs/index.php/jmm/article/view/14370