Modelling of phase equilibria in the Hf-V system below room temperature

  • Jan Vřešťál 1 Masaryk University, Central European Institute of Technology, CEITEC MU, Brno, Czech Republic 2 Academy of Sciences of the Czech Republic, Institute of Physics of Materials, Brno, Czech Republic 3 Masaryk University, Faculty of Science, Department of Chemistry, Brno, Czech Republic
  • Jana Pavlů 1 Masaryk University, Central European Institute of Technology, CEITEC MU, Brno, Czech Republic 3 Masaryk University, Faculty of Science, Department of Chemistry, Brno, Czech Republic 2 Academy of Sciences of the Czech Republic, Institute of Physics of Materials, Brno, Czech Republic
  • Mojmír Šob 1 Masaryk University, Central European Institute of Technology, CEITEC MU, Brno, Czech Republic 2 Academy of Sciences of the Czech Republic, Institute of Physics of Materials, Brno, Czech Republic 3 Masaryk University, Faculty of Science, Department of Chemistry, Brno, Czech Republic
  • Urszula D. Wdowik Pedagogical University, Institute of Technology, Cracow, Poland

Abstract


Phase transformation from orthorhombic HfV2 structure to cubic C15 Laves phase structure, which occurs during heating at about 114 K, is well known. In this contribution, a thermodynamic description of this phenomenon is provided supported by ab initio calculations. We utilize the third generation of thermodynamic database extending the Scientific Group Thermodata Europe (SGTE) unary data to zero Kelvin and demonstrate that it may be also applied to intermetallic phases. The data from a recent thermodynamic assessment of the Hf-V system (valid for temperatures above 298.15 K) were used and extended to zero Kelvin by the same method as it was used for unary data. Under the assumption of validity of harmonic approximation and electronic contribution to the heat capacity, the thermodynamics of C15 and orthorhombic phase were described. With the help of ab initio approach, we demonstrate that the HfV2 orthorhombic phase and C15 Laves phase are mechanically stable at 0 K and thanks to entropy stabilization they are in equilibrium with pure element phases in the temperature region of structural change.

Author Biographies

Jan Vřešťál, 1 Masaryk University, Central European Institute of Technology, CEITEC MU, Brno, Czech Republic 2 Academy of Sciences of the Czech Republic, Institute of Physics of Materials, Brno, Czech Republic 3 Masaryk University, Faculty of Science, Department of Chemistry, Brno, Czech Republic

1 Central European Institute of Technology, CEITEC MU, Brno

2 Institute of Physics of Materials, Brno

3 Faculty of Science, Department of Chemistry, Brno

Jana Pavlů, 1 Masaryk University, Central European Institute of Technology, CEITEC MU, Brno, Czech Republic 3 Masaryk University, Faculty of Science, Department of Chemistry, Brno, Czech Republic 2 Academy of Sciences of the Czech Republic, Institute of Physics of Materials, Brno, Czech Republic

1 Masaryk University, Central European Institute of Technology, CEITEC MU, Brno, Czech Republic

3 Masaryk University, Faculty of Science, Department of Chemistry, Brno, Czech Republic

2 Academy of Sciences of the Czech Republic, Institute of Physics of Materials, Brno, Czech Republic

Mojmír Šob, 1 Masaryk University, Central European Institute of Technology, CEITEC MU, Brno, Czech Republic 2 Academy of Sciences of the Czech Republic, Institute of Physics of Materials, Brno, Czech Republic 3 Masaryk University, Faculty of Science, Department of Chemistry, Brno, Czech Republic

1 Masaryk University, Central European Institute of Technology, CEITEC MU, Brno, Czech Republic

2 Academy of Sciences of the Czech Republic, Institute of Physics of Materials, Brno, Czech Republic

3 Masaryk University, Faculty of Science, Department of Chemistry, Brno, Czech Republic

Urszula D. Wdowik, Pedagogical University, Institute of Technology, Cracow, Poland
Pedagogical University, Institute of Technology, Cracow, Poland

References

T.R. Finlayson., H.R. Khan., J. Less Common. Met., 57 (1978) 237.

F.R. Drymiotis, J.C. Lashley, T. Kimura, G. Lawes, J.L. Smith, D.J. Thoma, R.A. Fisher, N.E. Phillips, Ya. Mudryk, V.K. Pecharsky, X. Moya, A. Planes, Phys. Rev. B, 72 (2005) 024543.

J.E. Doherty, J.E. Gibbons, Phys. Stat. Solidi b, 44 (1971) K5-8.

T.R. Finlayson, K.W. Thomson, T.F. Smith, J. Phys. F: Metal. Phys., 8 (1978) 2269.

D.E. Moncton, Solid St. Commun. 13 (1973) 1779.

F. Chu, D.J. Thoma, T.E. Mitchell, C.L. Lin, M. Šob, Phil. Mag. Part B, 77 (1998) 121.

F. Chu., M. Šob, R. Siegl, T.E. Mitchell, D.P. Pope, S.P. Chen, Phil. Mag. Part B, 70 (1994) 881.

F. Chu, T.E. Mitchell, S.P. Chen, M. Šob, R. Siegl, D.P. Pope, Journal of Phase Equilibria, 18 (1997) 536.

F. Stein, M. Palm, G. Sauthof, Intermetallics, 13 (2005) 1056.

O. Rapp, G. Benediktsson, Phys. Lett. A, 74 (1979) 449.

D.E. Moncton, Solid State Commun., 13 (1973) 1779.

A.C. Lawson, W.H. Zachariasen, Phys. Lett., 38A (1972) 1.

Q. Chen, B. Sundman, J. Phase Equilibria, 22 (2001) 631.

Q. Chen, B. Sundman, Acta Mater., 49 (2001) 947.

J. Vřešťál, J. Štrof, J. Pavlů, Calphad, 37 (2012) 37.

J. Pavlů, P. Řehák, J. Vřešťál, M. Šob, Calphad, 51 (2015) 161.

J. Štrof, J. Pavlů, U.D. Wdowik, J. Buršík, M. Šob, J. Vřešťál, Calphad, 44 (2014) 62.

E. Rudy, S. Windisch, J. Less-Common Metals, 15 (1968) 13.

J.F. Smith, in Binary Alloy Phase Diagrams, Vol. 3, 2nd ed., (T.B. Massalski) ASM International, Materials Park, 1990, p. 2121.

C.J. Servant, Phase Equilib. Diff., 26 (2005) 39.

D. Singh, Planewaves, Pseudopotentials and the LAPW Method, Kluwer, Boston, 1994.

G. Kresse, J. Furthmüller, Computational Materials Science, 6 (199) 15.

G. Kresse, J. Furthmüller, Phys. Rev. B, 54 (1996) 11169.

P. Blöchl, Phys. Rev. B, 50 (1994) 17953.

G. Kresse, J. Joubert, Phys. Rev. B, 59 (1999) 1758.

J.P. Perdew, K. Burke, M. Ernzerhof, Phys. Rev. Lett., 77 (1996) 3865.

P. Villars, L.D. Calvert, Pearson’s Handbook of Crystallographic Data for Intermetallic Phases, ASM International, Materials Park, 1991.

Y. Zhao, F. Chu, R.B. Von Dreele, Q. Zhu, Acta Cryst., B56 (2000) 601.

M.H.F. Sluiter, Calphad, 30 (2006) 357.

S.V. Meschel, O.J. Kleppa, J. Alloy Comp., 415 (2006) 143.

A. Ormeci, F. Chu, J.M. Wills, R.C. Albers, D.J. Thoma, S.P. Chen, Phys. Rev. B, 54(18) (1996) 12753.

P. Blaha, K. Schwarz, G.K.H. Madsen, D. Kvasnicka, J. Luitz, WIEN2k, An augmented plane wave plus local orbitals program for calculating crystal properties, Vienna University of Technology, Vienna, 2001.

J.P. Perdew, A. Zunger, Phys. Rev. B, 23 (1981) 5048.

K. Parlinski, Software Phonon, Cracow, 2008.

M. Hillert, J. Alloy Comp., 320 (2001) 161.

H.L. Lukas, S.G. Fries, B. Sundman, Computational Thermodynamics (The Calphad Method), Cambridge Univ. Press, Cambridge, 2007.

C. Kittel, Introduction to Solid State Physics, John Wiley and sons, New York, 1976.

G. Grimvall, Thermophysical properties of Materials, Elsevier Science, Amsterdam, 1999.

A.T. Dinsdale, Calphad, 15 (1991) 317.

Published
2017/10/31
How to Cite
Vřešťál, J., Pavlů, J., Šob, M., & Wdowik, U. D. (2017). Modelling of phase equilibria in the Hf-V system below room temperature. Journal of Mining and Metallurgy, Section B: Metallurgy, 53(3), 239. Retrieved from https://aseestant.ceon.rs/index.php/jmm/article/view/14431