Phase transformation and microstructure study of the as-cast Cu-rich Cu-Al-Mn ternary alloys

  • Tamara Holjevac Grguric University of Zagreb, Faculty of Metallurgy Sisak, Croatia
  • Dragan Manasijević Technical Faculty Bor, University of Belgrade
  • Stjepan Kožuh Faculty of Metallurgy, University of Zagreb
  • Ivana Ivanić Faculty of Metallurgy, University of Zagreb
  • Ljubiša Balanović Technical Faculty Bor, University of Belgrade
  • Ivan Anžel Faculty of Mechanical Engineering, University of Maribor
  • Borut Kosec Faculty of Natural Sciences and Engineering, University of Ljubljana
  • Milan Bizjak Faculty of Natural Sciences and Engineering, University of Ljubljana
  • Monika Kneževic Faculty of Metallurgy, University of Zagreb
  • Mirko Gojić Faculty of Metallurgy, University of Zagreb

Abstract


Four Cu-rich alloys from the ternary Cu-Al-Mn system were prepared in the electric-arc furnace and casted in cylindrical moulds with dimensions: f=8 mm and length 12 mm. Microstructural investigations of the prepared samples were performed by using optical microscopy (OM) and scanning electron microscopy, equipped by energy dispersive spectroscopy (SEM-EDS). Phase transition temperatures were determined using simultaneous thermal analyzer STA DSC/TG.  Phase equilibria calculation of the ternary Cu-Al-Mn system was performed using optimized thermodynamic parameters from literature and Thermo-Calc software, TCW5. Microstructure and phase transitions of the prepared as-cast alloys were investigated and experimental results were compared with the results of thermodynamic calculations.

References

] C.A. Canbay et all, Controlling of Transformation Temperatures of Cu-Al-Mn Shape Memory Alloys by Chemical Composition, Acta Phys. Pol. A. 125, 5 (2014) 1163-1166.

R. Dasgupta, A. K. Jain, P. Kumar, S. Hussain, A. Pandey, J. Alloy. Comp. 620 (2015) 60-66.

N. Koeda, T. Omori, Y. Sutou, H. Suzuki et all, Damping properties of ductile Cu-Al-Mn-based shape memory alloys, Mater. Trans. 46, 1 (2005) 118-122.

J. Liu, H. Huang, J. Xie, Effects of aging treatment on the microstructure and superelasticity of columnar-grained Cu71Al18Mn11 shape memory alloy, Inter. J. Min. Met. Mat. 23, 10 (2016) 1-11.

Y. Sutou, T. Omori, K. Yamauchi, N. Ono, R. Kainuma, K. Ishida, Effect of grain size and texture on pseudoelasticity in Cu-Al-Mn-based shape memory wire, Acta Mater. 53 (2005) 4121-4133.

T. Holjevac Grgurić et all, Thermodynamic Calculation of Phase Equilibria of the Cu-Al-Mn Alloys, Proceedings on Metallic and Non-metallic Materials, Zenica, (2016) 83-90.

C. A. Canbay, A. Aydogdu, Relationship between transformation temperatures and alloying elements in Cu-Al-Ni shape memory alloys, J. Therm. Anal. Calorim. 113, 2 (2013) 731-737.

C.A. Canbay, S. Gudeloglu, Z. Kargoz Genz, Investigation of the Enthalpy/Entropy Variation and Structure of Cu-Al-Mn-Fe Shape Memory Alloys, Int. J. Thermophys. 36, 4 (2015) 783-794.

C.A. Canbay, A. Aydogdu, Y. Aydogdu, The Investigation of Thermal and Magnetic Properties and Microstructure Analysis of Cu-Al-Mn Shape Memory Alloys, J. Supercond. Nov. Magn. 24 (2011) 871–877.

Y. Sutou, R. Kainuma, K. Ishida, Effect of alloying elements on the shape memory properties of ductile Cu–Al–Mn alloys, Mat. Sci. Eng A 273-275 (1999) 375-379.

Z. Chen, P. Chen, S. Li, Effect of Ce addition on microstructure of Al20Cu2Mn3 twin phase in an Al–Cu–Mn casting alloy, Mat. Sci. Eng. A 532 (2012) 606-609.

D. S. Kanibolotsky, O. A. Bieloborodova, N. V. Kotova, V. V. Lisnyak,Thermodynamic properties of liquid Al-Si and Al-Cu alloys, J. Therm. Anal. Calorim. 70 3 (2002) 975-983.

Murray, J.L., Al-Cu (Aluminum-Copper), Phase Diagrams of Binary Copper Alloys, Subramanian, P.R., Chakrabati, D.T., Laughlin, D.E., ASM International, Materials Park, OH, 18-42 1994.

V. S. Sudavtsova, N. V. Kotova, L. A. Romanova, Thermodynamic properties of Al-Mn melts, Inorg. Mat. 45 6 (2009) 631-634.

A. I. Zaitsev, N. E. Zaitseva, R. Y. Shimko, N.A. et all, Thermodynamic properties of Al-Mn, Al-Cu, and Al-Fe-Cu melts and their relations to liquid and quasicrystal structure, J. Phys. Condens. Matter. 19 20 (2008) doi: 10.1088/0953-8984/20/11/114121

P.D. Desai, J. Phys. Chem. Ref. Data 16 1 (1987) 109-124.

Murray, J.L., The Aluminium-Copper System, Int. Met. Rev. 30 (1985) 211-233.

R. Kainuma, N. Satoh, X. J. Liu, I. Ohnuma, K. Ishida, Phase equilibria and Heusler phase stability in the Cu-rich portion of the Cu-Al-Mn system, J. Alloys Comp. 266 (1998) 191-200.

McAlister, A.J., Murray, J.L., The Al-Mn (Aluminum-Manganese) System, Bull. Alloy Phase Diagrams, 8 (1987) 438-447.

Liu, X.J., Ohnuma, I., Kainuma, R., Ishida, K., Thermodynamic Assessment of the

Landolt-Börnstein, Numerical Data and Functional Relationship in Science and

Y. Sutou et all, Development of Medical Guide Wire of Cu-Al-Mn–Base

R. Kainuma, S. Takahashi, K. Ishida, Thermoelastic martensite and shape memory effect in ductile Cu-Al-Mn alloys, Metall. Mater. Trans. A, 27A (1996) 2187-2195.

Y. Sutou, T. Omori, R. Kainuma, K. Ishida, Ductile Cu-Al-Mn based shape memory alloys: general properties and applications, Mater. Sci Techn. 24, 8 (2008) 896-900.

H.L. Lucas, Landolt-Börnstein, New Series IV/11A2, Springer Verlag, Berlin, Heidelberg, (2002) 79-97.

J. Miettinen, Thermodynamic Description of the Cu-Al-Mn System in the Copper-Rich Corner, CALPHAD 27, 1 (2003) 103-114.

T. Omori, N. Koeda, Y. Sutou, R. Kainuma and K. Ishida, Superplasticity of Cu-Al-Mn-Ni Shape Memory Alloy, Materials Transactions, 48 11 (2007) 2914-2918.

A. T. Dinsdale, SGTE Data for Pure Elements, Teddington, Middlesex, UK

Published
2017/10/31
How to Cite
Holjevac Grguric, T., Manasijević, D., Kožuh, S., Ivanić, I., Balanović, L., Anžel, I., Kosec, B., Bizjak, M., Kneževic, M., & Gojić, M. (2017). Phase transformation and microstructure study of the as-cast Cu-rich Cu-Al-Mn ternary alloys. Journal of Mining and Metallurgy, Section B: Metallurgy, 53(3), 413. Retrieved from https://aseestant.ceon.rs/index.php/jmm/article/view/14771