Thermodynamic modeling of the In–Sc and In–Y systems supported by first-principles calculations

  • Zhi Hu 1.Chongqing University of Technology, School of Materials Science and Engineering, Chongqing, 400054, China 2. Chongqing Municipal Key Laboratory of Institutions of Higher Education for Mould Technology, Chongqing 400054, China 3.Shanghai Jiao Tong University, School of Materials Science and Engineering, Shanghai, 200030, China
  • Can Huang 1.Chongqing University of Technology, School of Materials Science and Engineering, Chongqing, 400054, China 2. Chongqing Municipal Key Laboratory of Institutions of Higher Education for Mould Technology, Chongqing 400054, China
  • Jian Tu 1.Chongqing University of Technology, School of Materials Science and Engineering, Chongqing, 400054, China 2. Chongqing Municipal Key Laboratory of Institutions of Higher Education for Mould Technology, Chongqing 400054, China
  • Yeyan Huang 1.Chongqing University of Technology, School of Materials Science and Engineering, Chongqing, 400054, China 2. Chongqing Municipal Key Laboratory of Institutions of Higher Education for Mould Technology, Chongqing 400054, China
  • Anping Dong Shanghai Jiao Tong University, School of Materials Science and Engineering, Shanghai, 200030, China

Abstract


Based on an assessment of the phase equilibria and thermodynamic data in the literature, the thermodynamic modeling of the In–Sc and In–Y systems was carried out by means of the calculation of phase diagram (CALPHAD) method supported by first-principles calculations. The solution phases, i.e., liquid, (In), (αSc), (βSc),(αY) and (βY),were modeled with the substitutional regular solution model. 10 intermetallic compounds, includingInSc3, InSc2, In4Sc5, InSc, In2Sc, In3Sc, InY2, InY, In5Y3, and In3Y were described as stoichiometric phases, while In3Y5 was modeled with a sublattice model with respect to its homogeneity range. The enthalpies of formation of the intermetallic compounds at 0 K were computed using first-principle calculations and were used as input for the thermodynamic optimization. A set of self-consistent thermodynamic parameters for both the In–Sc and In–Y systems were obtained and the calculated phase diagrams are in good agreement with the experimental data.

Author Biographies

Zhi Hu, 1.Chongqing University of Technology, School of Materials Science and Engineering, Chongqing, 400054, China 2. Chongqing Municipal Key Laboratory of Institutions of Higher Education for Mould Technology, Chongqing 400054, China 3.Shanghai Jiao Tong University, School of Materials Science and Engineering, Shanghai, 200030, China
Materials Science and Engineering,
Can Huang, 1.Chongqing University of Technology, School of Materials Science and Engineering, Chongqing, 400054, China 2. Chongqing Municipal Key Laboratory of Institutions of Higher Education for Mould Technology, Chongqing 400054, China

Materials Science and Engineering,

Professor

Jian Tu, 1.Chongqing University of Technology, School of Materials Science and Engineering, Chongqing, 400054, China 2. Chongqing Municipal Key Laboratory of Institutions of Higher Education for Mould Technology, Chongqing 400054, China

Materials Science and Engineering,

Lecturer

Yeyan Huang, 1.Chongqing University of Technology, School of Materials Science and Engineering, Chongqing, 400054, China 2. Chongqing Municipal Key Laboratory of Institutions of Higher Education for Mould Technology, Chongqing 400054, China
Materials Science and Engineering,
Anping Dong, Shanghai Jiao Tong University, School of Materials Science and Engineering, Shanghai, 200030, China

Materials Science and Engineering,

Professor

References

M. Voncina, M. Petric, P. Mrvar, J. Medved, J. Min. Metall. Sect. B-Metall. 53.2 (2017): 107.

B. Zlatičanin, S. Đurić, B. Jordović, J. Min. Metall. Sect. B-Metall. 39.3-4 (2003): 509-526.

R. H. Estrada-Ruiz, R. Flores-Campos, G. A. Treviño-Rodríguez, et al., J. Min. Metall. Sect. B-Metall. 52.2 (2016): 163.

C. Mendis, C. Bettles, M. Gibson, S. Gorsse, C. Hutchinson, Philos. Mag. Lett. 86 (2006) 443-456

A. Becerra, M. Pekguleryuz, J. Mat. Res. 24 (2009) 1722-1729

S. Lathabai, P. Lloyd, Acta Mater.50 (2002) 4275-4292

S. Dev, A.A. Stuart, R.R.D. Kumaar, B. Murty, K.P. Rao, Mater. Sci. Eng. A-Struct. 467 (2007)132-138

H. Zou, X. Zeng, C. Zhai, W. Ding, Mater. Sci. Eng. A-Struct. 402 (2005) 142-148

Y. Zhang, X. Zeng, L. Liu, C. Lu, H. Zhou, Q. Li, Y. Zhu, Mater. Sci. Eng. A-Struct. 373 (2004) 320-327

S. Yatsenko, A. Semyannikov, H. Shakarov, E. Fedorova, J. Less Common Met. 90 (1983) 95-108

A. Palenzona, J. Less Common Met. 16 (1968) 379-384

E. Franceschi, A. Palenzona, J. Less Common Met. 18 (1969) 93-98

J. Moriarty, J. Humphreys, R. Gordon, N. Baenziger, Acta Crystallogr. 21 (1966) 840-841

S. Delfino, A. Saccone, D. Mazzone, R. Ferro, J. Less Common Met. 81 (1981) 45-53

I. Harris, G. Raynor, J. Less Common Met. 9 (1965) 7-19

F.H. Spedding, A. Daane, K. Herrmann, Acta Crystallogr. 9 (1956) 559-563

F. Weitzer, K. Remschnig, J. Schuster, P. Rogl, J. Mat. Res. 5 (1990) 2152-2159

A. Palenzona, P. Manfrinetti, R. Palenzona, J. Alloys Compd. 243 (1996) 182-185

H. Okamoto, J. Phase Equilib. 19 (1998)601

Y. Akahama, H. Fujihisa, H. Kawamura, Phys.Rev. Lett. 94 (2005) 195503

D.R. Kammler, M.A. Rodriguez, R.G. Tissot, D.W. Brown, B. Clausen, T.A. Sisneros, Metall. Mater. Trans. A 39 (2008)2815-2819

V. Compton, B. Matthias, Acta Crystallogr. 15 (1962)94-94

Y. Zhong, C. Wolverton, Y.A. Chang, Z.-K. Liu, Acta Mater. 52 (2004) 2739-2754

L. Zhang, J. Wang, Y. Du, R. Hu, P. Nash, X.-G. Lu, C. Jiang, Acta Mater. 57 (2009)5324-5341

Y. Wang, S. Curtarolo, C. Jiang, R. Arroyave, T. Wang, G. Ceder, L.-Q. Chen, Z.-K. Liu, Calphad 28 (2004)79-90

D. Djurovic, B. Hallstedt, J. Von Appen, R. Dronskowski, Calphad 34 (2010) 279-285

X. Liu, R. Kainuma, C. Wang, I. Ohnuma, K. Ishida, Metall. Mater. Trans. A 35 (2004)1641-1654

C. Guo, Z. Du, J. Alloys Compd. 385 (2004) 109-113

K. Chang, M. to Baben, D. Music, D. Lange, H. Bolvardi, J. M. Schneider, Acta Mater. 98 (2015)135-140

K. Chang, B. Hallstedt, D. Music, Chem. of Mater. 24 (2011) 97-105

G. Huang, L. Jiu, L. Zhang, Z. Jin, J. Min. Metall. Sect. B-Metall. 52.2 (2016): 177-183.

B. Hu, Y. Du, J. J. Yuan, Z. F. Liu, Q. P. Wang, J. Min. Metall. Sect. B-Metall. 51.2 (2015): 125-132.

J. Zhao, J. Zhou, S. Liu, Y. Du, S. Tang, Y. Yang, J. Min. Metall. Sect. B-Metall. 52.1 (2016): 99-112.

K. Chang, D. Music, M. T. Baben, D. Lange, H. Bolvard, J. M. Schneider, Sci. Technol. Adv. Mater. 17.1 (2016): 210-219.

J.P. Perdew, J. Chevary, S. Vosko, K.A. Jackson, M.R. Pederson, D. Singh, C. Fiolhais, Phys. Rev. B 46 (1992)6671

J.P. Perdew, K. Burke, M. Ernzerhof, Phys. Rev. Lett.77 (1996) 3865

G. Kresse, D. Joubert, Phys. Rev. B 59 (1999) 1758

G. Kresse, J. Furthmüller, Phys.Rev. B 54 (1996)11169

H.J. Monkhorst, J.D. Pack, Phys. Rev. B 13,5188 (1976)

M. Methfessel, A. Paxton, Phys. Rev. B 40 (1989) 3616

P.E. Blöchl, O. Jepsen, O.K. Andersen, Phys. Rev. B 49 (1994) 16223

A.T. Dinsdale, Calphad 15 (1991) 317-425

O. Redlich, A. Kister, Ind. Eng. Chem. 40(1948) 345-348.

B. Sundman, B. Jansson, J.-O. Andersson, Calphad, 9 (1985) 153-190

Y. Du, R. Schmid-Fetzer, H. Ohtani, Z. Metallkd. 88 (1997) 545-556

Published
2018/10/17
How to Cite
Hu, Z., Huang, C., Tu, J., Huang, Y., & Dong, A. (2018). Thermodynamic modeling of the In–Sc and In–Y systems supported by first-principles calculations. Journal of Mining and Metallurgy, Section B: Metallurgy, 54(2), 161. Retrieved from https://aseestant.ceon.rs/index.php/jmm/article/view/15844
Section
Original Scientific Paper