Microstructure characterization and quantitative analysis of copper alloy matrix composites reinforced with WC-xNi powders prepared by spontaneous infiltration

  • Ismail DAOUD University of Sciences and Technology HOUARI BOUMEDIENE
  • Djamel MIROUD University of Sciences and Technology HOUARI BOUMEDIENE
  • RIDVAN YAMANOGLU Kocaeli University

Abstract


In this study, copper alloy matrix composites reinforced with WC particles with the addition of different Ni contents (0, 3, 5, 7, and 10 wt.%) were prepared by the spontaneous infiltration process. Image analysis was used to quantify the microstructural parameters, such as the particle size and distribution, area fraction, binder mean free path, pore size and porosity. The effect of Ni addition on the microstructure, density and hardness are discussed. The results show that a small addition of Ni improves the densification of the infiltrated composites. The quantitative analysis results are in good agreement with the microstructure properties and hardness results.

References

A. Mortensen and J. Llorca, Annu. Rev. Mater. Res, 40 (2010) 243-270.

B. Cantor, F. P. Dunne, and I. C. Stone, Metal and ceramic matrix composites, CRC Press, 2003.

I. Chang and Y. Zhao, Advances in Powder Metallurgy: Properties, Processing and Applications, Elsevier, 2013.

T. Clyne, An introductory overview of MMC systems, types, and developments, Comprehensive composite materials, Elsevier, 2000, 1-26.

S. Suresh, Fundamentals of metal-matrix composites, Elsevier, 2013.

N. Natarajan, V. Krishnaraj, and J. P. Davim, Metal matrix composites: synthesis, wear characteristics, machinability study of MMC brake drum, Springer, 2014.

M. Reyes and A. Neville, Wear, 255 (2003) 1143-1156.

K. Kembaiyan and K. Keshavan, Wear, 186 (1995) 487-492.

E. Hong, B. Kaplin, T. You, M.-s. Suh, Y.-S. Kim, and H. Choe, Wear, 270(9) (2011) 591-597.

P. Deshpande and R. Lin, Mater. Sci. Eng., A, 418(1) (2006) 137-145.

M. Yusoff, R. Othman, and Z. Hussain, Mater. Desi., 32(6) (2011) 3293-3298.

J. Liu, S. Yang, W. Xia, X. Jiang, and C. Gui, J. Alloy. Compd., 654 (2016) 63-70.

L. Wojnar, Image analysis: applications in materials engineering, Crc Press, 1998.

Wojnar, Leszek, Krzysztof J. Kurzydlowski, and Janusz Szala. Mater. Park., OH: ASM Inter., (2004) 403-427.

J. J. Friel, Practical guide to image analysis, ASM international, 2000.

M. Charpentier, A. Hazotte, and D. Daloz, Mater. Sci. Eng., A, 491(1) (2008) 321-330.

H. E. Exner, Image Anal. Stereol., 23(2) (2011) 73-82.

J. Shen, L. Campbell, P. Suri, and R. M. German, Int. J. Refract. Metals. Hard. Mater., 23 (2005) 99-108.

A. Petersson and J. Ågren, Acta Mater., 53 (2005) 1673–1683.

O. Dengiz, R. McAfee, I. Nettleship, and A. E. Smith, J. Eur. Ceram. Soc., 27 (2007) 1927-1933.

A. M. Gokhale, Microsc. Microanal., 22 (2016) 1966-1967.

M. Coster, X. Arnould, J. Chermant, L. Chermant, and T. Chartier, J. Eur. Ceram. Soc., 25 (2005) 3427-3435.

V. Michaud and A. Mortensen, Composites Part A, 32 (2001) 981-996.

A. Mortensen, Melt infiltration of metal matrix composites, Comprehensive composite materials, Elsevier, 2000, 521-554.

N. Eustathopoulos, A. Mortensen, and S. Suresh, Capillary phenomena, interfacial bonding and reactivity, Butterworths,1993.

J. Fridlyander, Metal matrix composites, Springer Science & Business Media, 2012.

A. Léger, L. Weber, and A. Mortensen, J. Mater. Sci., 49 (2014) 7669-7678.

V. Silva, C. Fernandes, and A. Senos, Ceram. Int., 42(1) (2016) 1191-1196.

H. De Macedo, A. Da Silva, and D. de Melo, Mater. Lett., 57(24) (2003) 3924-3932.

O. M. Alzouma, M.-A. Azman, D.-L. Yung, V. Fridrici, and P. Kapsa, Wear, 352 (2016) 130-135.

Y. Xu, Z. Yang, Z. Han, G. Liu, and J. Li, Ceram. Int., 40(1) (2014) 1037-1043.

N. Lin, Y. Jiang, D. Zhang, C. Wu, Y. He, and D. Xiao, Int. J. Refract. Metals. Hard. Mater., 29(4) (2011) 509-515.

K. Eun, D. Kim, and D. Yoon, Powder metall., 27(2) (1984) 112-114.

X. Zhang, J. Zhou, N. Lin, K. Li, K. Fu, B. Huang, and Y. He, Int. J. Refract. Metals. Hard. Mater., 57 (2016) 64-69.

Anon, Standard Test Methods for Density of Compacted or Sintered Powder Metallurgy (PM) Products Using Archimedes’ Principle. 2008, ASTM International.

Anon, Standard Test Methods for Vickers Hardness and Knoop Hardness of Metallic Materials. 2017, ASTM International.

S. Ren, X. He, X. Qu, and Y. Li, J. Alloy. Compd., 455 (2008) 424-431.

F. Akhtar, S. J. Askari, K. A. Shah, X. Du, and S. Guo, Mater. Charact., 60(4) (2009) 327-336.

P. Deshpande, J. Li, and R. Lin, Mater. Sci. Eng., A, 429(1) (2006) 58-65.

H.-C. Kim, I.-J. Shon, J.-K. Yoon, J.-M. Doh, and Z. A. Munir, Int. J. Refract. Metals. Hard. Mater., 24(6) (2006) 427-431.

N. Ray, B. Kempf, T. Mützel, F. Heringhaus, L. Froyen, K. Vanmeensel, and J. Vleugels, J. Alloy. Compd., 670 (2016) 188-197.

Published
2018/10/17
How to Cite
DAOUD, I., MIROUD, D., & YAMANOGLU, R. (2018). Microstructure characterization and quantitative analysis of copper alloy matrix composites reinforced with WC-xNi powders prepared by spontaneous infiltration. Journal of Mining and Metallurgy, Section B: Metallurgy, 54(2), 169. Retrieved from https://aseestant.ceon.rs/index.php/jmm/article/view/16129
Section
Original Scientific Paper