Support algorithm for blast furnace operation with optimal fuel consumption

  • Mikolaj Bernasowski AGH University of Science and Technology
  • Arkadiusz Klimczyk AGH University of Science and Technology
  • Ryszard Stachura AGH University of Science and Technology
Keywords: Blast furnace fuel rate, Ironmaking, Direct reduction of wustite, Model-based control,

Abstract


Fuel consumption in blast furnaces depends on many factors that are mainly conditioned by the technological level of a given blast furnace, the steel mill in which it operates, and the type and quality of ferrous feed, coke, and additional reducing agents. These are global factors which a furnace crew cannot control during operation. On the other hand, using their own experience and decision-making software, a crew can run a blast furnace with minimal fuel consumption under current batch and process conditions. The paper presents a model-based algorithm for optimizing the operation of blast furnaces to achieve the lowest fuel consumption. The algorithm allows the heat demands to be continuously calculated and highlights any wastage that could be reduced without affecting the stable operation of the blast furnace.

Author Biographies

Mikolaj Bernasowski, AGH University of Science and Technology
Department of Ferrous Metallurgy, PhD, DSc, assistaint professor
Arkadiusz Klimczyk, AGH University of Science and Technology
Department of Ferrous Metallurgy, PhD, assistaint professor
Ryszard Stachura, AGH University of Science and Technology
Department of Ferrous Metallurgy, PhD, assistaint professor

References

R.M. Duarte, I. Ruiz-Bustinza, D. Carrascal, L.F. Verdeja, J. Mochón, A. Cores, Ironmak. Steelmak. 40 (2013) 350–359.

F. ming Zhang, J. Iron Steel Res. Int. 20 (2013) 53–60.

Y. Li, X. Zhang, J. Zhang, J. Zhou, H. Yan, Appl. Therm. Eng. 67 (2014) 72–79.

I. Koštial, P. Nemčovský, M. Rogal’, D. Gábor, E. Dorčák, J. Terpák, Proc. 15th Triennial World Congress, Barcelona, Spain, IFAC Proceeding Volumes 35 (2002) 101–106.

T. Ariyama, S. Natsui, T. Kon, S. Ueda, S. Kikuchi, H. Nogami, ISIJ Int. 54 (2014) 1457–1471.

C. Zhou, G. Tang, J. Wang, D. Fu, T. Okosun, A. Silaen, B. Wu, JOM. 68 (2016) 1353–1362.

P. Pustejovska, J. Tuma, V. Stanek, J. Kristal, S. Jursova, J. Bilik, Steel Res. Int. 86 (2015) 320–328.

S. Ghosh, N.N. Viswanathan, N.B. Ballal, Steel Res. Int. 87 (2017) 1600440.

V.R. Radhakrishnan, K. Maruthy Ram, J. Process Control. 11 (2001) 565–586.

B. Panic, Metalurgija. 52 (2013) 177–180.

B. Panic, Arch. Metall. Mater. 62 (2017)1449–1452.

V.R. Radhakrishnan, A.R. Mohamed, J. Process Control. 10 (2000) 509.

A. Klimczyk, M. Bernasowski, R. Stachura, Proc. 25th Anniversary International Conference on Metallurgy and Materials METALS 2016, May 25–27, Brno, Czech Republic, 2016, p. 121–126.

A. Bulsari, H. Saxen, Steel Res. 66 (1995) 231–236.

W. Chen, B.-X. Wang, H.-L. Han, Ironmak. Steelmak. 37 (2010) 458–463.

H. Saxén, F. Pettersson, ISIJ Int. 47 (2007) 1732–1737.

F. a. García, P. Campoy, J. Mochón, I. Ruiz-Bustinza, L.F. Verdeja, R.M. Duarte, ISIJ Int. 50 (2010) 730–737.

F. Pettersson, N. Chakraborti, H. Saxén, Appl. Soft Comput. J. 7 (2007) 387–397.

R. Jha, P.K. Sen, N. Chakraborti, Steel Res. Int. 85 (2014) 219–232.

J. sun Zeng, C. hou Gao, H. ye Su, Comput. Chem. Eng. 34 (2010) 1854–1862.

Z. Jiu-sun, L. Xiang-guan, G. Chuan-hou, L. Shi-hua, Proc. American Control Conference, June 11–13, Seattle, USA, 2008, p. 2481–2485.

J. s. Zeng, C. h. Gao, J. Process Control. 19 (2009) 1519–1528.

S. Luo, J. Huang, J. Zeng, Q. Zhang, ISIJ Int. 51 (2011) 1668–1673.

E. Kardas, Z. Skuza, Metalurgija. 56 (2017) 5–8.

R.Mežibrický, M. Fröhlichová, J. Min. Metall. Sect. B-Metall. 54 (1) B (2018) 9–20.

S. Jursova, P. Pustejovska, S. Brozova, Alexandria Eng. J. 57 (2018) 1657-1664.

I.F. Kurunov, S. V. Filatov, A.M. Bizhanov, Metallurgist. 60 (2017) 1022–1024.

M. Geerdes, H. Toxopeus, C. van der Vliet, Modern Blast Furnace Ironmaking an introduction, Verlag Stahleisen GmbH, Dusseldorf, 2004.

A.N. Ramm, Modern blast furnace process, Metallurgy, Moscow, 1980.

E.G. Donskov, V.P. Lyalyuk, A.D. Donskov, Steel Transl. 44 (2014) 824–828.

N.A. Spirin, Y.G. Yaroshenko, V. V Lavrov, IOP Conf. Series: Materials Science and Engineering 150 (2016) 12022.

A. Babich, D. Senk, H.W. Gudenau, K. Mavrommatis, O. Spaniol, Y. Babich, A. Formoso, Revista de Metalurgia. SPEC. VOL. (2005) 289–293.

Y. Qie, Q. Lyu, J. Li, C. Lan, X. Liu, ISIJ Int., 57 (2017) 404–412.

Z. Wang, J. Zhang, J. Ma, K. Jiao, ISIJ Int., 57 (2017) 443–452.

J. Bilik, P. Pustejovska, S. Brozova, S. Jursova, Sci. Iran. 20 (2013) 337–342.

C. Yilmaz, J. Wendelstorf, T. Turek, J. Clean. Prod.154 (2017) 488-501.

M. Bernasowski, Steel Res. Int. 85 (2014) 670–678.

Published
2019/04/17
How to Cite
Bernasowski, M., Klimczyk, A., & Stachura, R. (2019). Support algorithm for blast furnace operation with optimal fuel consumption. Journal of Mining and Metallurgy, Section B: Metallurgy, 55(1), 34. Retrieved from https://aseestant.ceon.rs/index.php/jmm/article/view/16468
Section
Original Scientific Paper