Experimental determination of phase equilibria at 900 °C and liquidus surface in the Cu-Ni-Ti system

  • Bo Jin Central South University
  • Xingxu Lu University of Connecticut
  • Shuhong Liu Central South University
  • Dandan Huang Guangxi University
  • Yong Du Central South University

Abstract


Phase equilibria at 900 °C and the liquidus projection in the Ni-rich corner of the Cu-Ni-Ti ternary system were investigated by X-ray diffraction (XRD), scanning electron microscopy (SEM), electron probe microanalysis (EPMA) and differential scanning calorimetry (DSC) on the annealed and as-cast alloys. For the isothermal section at 900 °C, the high-temperature ternary compound (τ5) reported in literature was not observed but the corresponding low-temperature compound (τ6) was identified to be stable at this temperature. For the liquidus projection, the primary phase τ4 was experimentally determined for the first time, and the related solidification paths were identified through the experimental data on the as-cast alloys.
One solid-state invariant reaction and two ternary eutectic reactions NiTi + τ4 → τ1 + Ni3Ti at 1098.3 °C, L → τ1 + τ4 + NiTi at 1126 °C and L → τ1 + τ6 + fcc(Cu,Ni) at 1069.5°C were detected. Scheil reaction scheme was also presented accordingly. All these obtained experimental results shall provide reliable information for further thermodynamic optimization of the Cu-Ni-Ti ternary system.

References

J.M. Jani, M. Leary, A. Subic, M.A. Gibson, Mater. Des., 56 (2014) 1078-1113.

J.A. Shaw, S. Kyriakides, J. Mech. Phys. Solids, 43(8) (1995) 1243-1281.

S. Kozuh, L. Vrsalovic, M. Gojic, S. Gudic, B. Kosec, J. Min. Metall., Sect. B, 52 (2016) 53-61.

Y. Shugo, F. Hasegawa, T. Honma, Bull. Res. Inst. Min. Dressing Metall. Tohoku Univ., 37(1) (1981) 79-88.

K. Melton, O. Mercier, Metall. Trans. A, 9 (1978) 1487-1488.

O. Mercier, K.N. Melton, Metall. Trans. A, 10(3) (1979) 387-389.

T.W. Duerig, K. Melton, D. Stöckel, Engineering aspects of shape memory alloys, Butterworth-Heinemann, 1990.

V.A. Likhachev, S.R. Shimanskiy, Fiz. Met. Metalloved., 58(4) (1984) 822-823.

B.S. Murty, M.M. Rao, S. Ranganathan, Mater. Sci. Eng., A, 196(1-2) (1995) 237-241.

P. Nash, ASM International(USA), (1991) 394.

J.L. Murray, ASM International, Materials Park, OH, (1987) 197-211.

J.C. Schuster, G. Cacciamani, Germany: Springer-Verlag, (2005) 266-283.

H.U. Pfeifer, S. Bhan, K. Schubert, J. Less Common Met., 14(3) (1968) 291-302.

V. Fedorov, M. Zakharov, V. Kucherov, O. Osintsev, Russ. Metall., (6) (1971) 128-131.

F.J.J.V. Loo, G.F. Bastin, A.J.H. Leenen, J. Less-Common Met., 57(1) (1978) 111-121.

F.J.J.v. Loo, G.F. Bastin, Diffusion in Metals and Alloys: International conference, Tihany, Hungaria, (1982) 580-592.

H. Zhang, Y. He, F. Yang, H. Liu, Z. Jin, Thermochim. Acta, 574 (2013) 121-131.

W.J. Zhu, L.I. Duarte, C. Leinenbach, Calphad, 47 (2014) 9-22.

M. Yakushiji, Y. Kondo, K. Kamei, J. Jpn. Inst. Met., 46(6) (1982) 571-577.

S.P. Alisova, P.B. Budberg, Metally, (1992) 218-223.

K. Joszt, Prace Inst. Hutniczych, 19 (1967) 303-313.

F. Staub, K. Goszt, Zeszyty Naukowe, Politech. Slaska, 189(3) (1967) 31-36.

S.P. Alisova, N.V. Volynskaya, P.B. Budberg, A.N. Kobylkin, Metally, (1986) 210-212.

M. Yakushiji, Y. Kondo, K. Kamei, J. Jpn. Inst. Met., 44(6) (1980) 620-624.

K.P. Gupta, The Cu-Ni-Ti (Copper-Nickel-Titanium) System, Phase Diagrams of Ternary Nickel Alloys, Part I, 1990.

W. Tang, R. Sandstrom, S. Miyazaki, J. Phase Equilib., 21(3) (2000) 227-234.

W. Tang, R. Sandstrom, Z.G. Wei, S. Miyazaki, Metall. Mater. Trans. A, 31(10) (2000) 2423-2430.

M. Lambrigger, J. Phys. Chem. Solids, 52(7) (1991) 913-914.[29] A. Taylor, R. Floyd, J. Inst. Met., 80(11) (1952) 577-587.

N.N. Sirota, T.E. Zhabko, Phys. Status Solidi A, 63(2) (1981) K211-K215.

Y. Mishima, S. Ochiai, T. Suzuki, Acta Metall., 33(6) (1985) 1161-1169.

V.F. Laves, H.J. Wallbaum, Zeitschrift für Kristallographie-Crystalline Materials, 101(1-6) (1939) 78-93.

R. Schmidt, M. Schlereth, H. Wipf, W. Assmus, M. Mullner, J. Phys.: Condens. Matter, 1(14) (1989) 2473.

M. Mueller, H. Knott, Transactions of American Institute of Metallurgical Engineers, 227(ANL-FGF-396) (1963).

A. Sinha, Trans. Metall. Soc. AIME, 245(2) (1969) 237-240.

V.N. Eremenko, Y.I. Buyanov, N.M. Panchenko, Powder Metall. Met. Ceram., 9(5) (1970) 410-414.

K. Schubert, Zeitschrift für Metallkunde, 56(3) (1965) 197.

V. N. Eremenko, Y.I. Buyanov, S.B. Prima, Powder Metall. Met. Ceram., 5(6) (1966) 494-502.

M. Nishida, T. Ueda, Y. Toyama, A. Chiba, Mater. Sci. Forum, 56-58 (1990) 599-604.

J.H.N.V. Vucht, J. Less Common Met., 11(5) (1966) 308-322.

K.P. Gupta, J. Phase Equilib., 23(6) (2002) 541-547.

M. Yakushiji, Y. Kondo, K. Kamei, J. Jpn. Inst. Met., 44(6) (1980) 615-619.

S.P. Alisova, P.B. Budberg, Y.K. Kovneristyi, Metally, (1992) 223-226.

A. Taylor, R. Floyd, J. Inst. Met., 80(11) (1952) 577-587.

Published
2018/10/17
How to Cite
Jin, B., Lu, X., Liu, S., Huang, D., & Du, Y. (2018). Experimental determination of phase equilibria at 900 °C and liquidus surface in the Cu-Ni-Ti system. Journal of Mining and Metallurgy, Section B: Metallurgy, 54(2), 209. Retrieved from https://aseestant.ceon.rs/index.php/jmm/article/view/16506
Section
Original Scientific Paper