Transient Heat Transfer and Solidification Modelling in Direct-Chill Casting Using a Generalized Finite Differences Method

  • Felix Raymundo Saucedo-Zendejo National Technological of Mexico, The Technological Institute of Saltillo, Mexico
  • Edgar Omar Resendiz-Flores National Technological of Mexico, The Technological Institute of Saltillo, Mexico

Abstract


The purpose of this work is to carry out a novel solution of the transient heat transfer problem in the start-up phase of direct-chill casting processes using a Generalized Finite Differences Method. This formulation is applied in order to solve the heat transfer equation in strong form under a Lagrangian description. The incorporation of the boundary conditions is done in a direct and simple manner. The meshfree nature of this approach gives the advantage of naturally capture the motion and phase boundaries evolution without the need of remeshing approaches. The simplicity, efficiency and suitability of this numerical formulation is demonstrated by comparison with published numerical results reported by other researchers which show that this approach is promising for simulating heat transfer problems during the start-up phase of direct-chill casting processes.

Author Biographies

Felix Raymundo Saucedo-Zendejo, National Technological of Mexico, The Technological Institute of Saltillo, Mexico
PhD. Student, División of Postgraduate Studies and Research, Department of Metal-Mechanical Engineering
Edgar Omar Resendiz-Flores, National Technological of Mexico, The Technological Institute of Saltillo, Mexico
Research Fellow, División of Postgraduate Studies and Research, Department of Metal-Mechanical Engineering

References

. D. G. Eskin, Physical Metallurgy of Direct Chill Casting of Aluminum Alloys, CRC Press, 2008.

. R. Vertnik and B. Šarler, Eng. Anal. Bound. Elem. 45 (2014) 45-61, DOI: 10.1016/j.enganabound.2014.01.017

. A. Kermanpur and S. Mahmoudi and A. Hajipour, J. Mater. Process. Tech. 206 (1-3) (2008) 62-68, DOI: 10.1016/j.jmatprotec.2007.12.004

. B. Zhao and B. G. Thomas and S. P. Vanka and R. J. O’malley, Metall. Mater. Trans. B 36 (6) (2005) 801, DOI: 10.1007/s11663-005-0083-3

. H. Moon and S. M. Hwang, Int. J. Numer. Meth. Eng. 57 (3) (2003) 315-339, DOI: 10.1002/nme.679

. A. Cwudziński, Int. J. Cast Metal Res. 30 (1) (2017) 50-60, DOI: 10.1080/13640461.2016.1234223

. L. Shvidkiy and B. A. Sokunov and I. A. Uskov and I. A. Smolyanov, Simulation of continuous casting process with electromagnetic influence to the ingot liquid phase, Young Researchers in Electrical and Electronic Engineering Conference (EIConRusNW), IEEE NW Russia, 2016

. V. I. Odinokov and E. A. Dmitriev and A. I. Evstigneev, Steel Transl. 47 (6) (2017) 383-388, DOI: 10.3103/S0967091217060080

. M. Stolbchenko and O. Grydin and A. Samsonenko and V. Khvist and M. Schaper, Forschung im Ingenieurwesen 78 (3-4) (2014) 121-130, DOI: 10.1007/s10010-014-0182-x

. S. V. Lukin and N. I. Shestakov and Y. V. Antonova, Metallurgist 58 (9-10) (2015) 815-820, DOI: 10.1007/s11015-015-0001-0

. M. Alizadeh and S. A. J. Jahromi and S. B. Nasihatkon, ISIJ Int. 50 (3) (2010) 411-417, DOI: 10.2355/isijinternational.50.411

. J. C. Álvarez Hostos and A. D. Bencomo and E. S. Puchi Cabrera, Can. Metall. Quart. 56 (2) (2017) 156-167, DOI: 10.1080/00084433.2017.1288882

. J. Kuhnert, PhD thesis, General smoothed particle hydrodynamics, Technische Universität Kaiserslautern, Kaiserslautern, Germany, 1999.

. S. Tiwari and J. Kuhnert and J. Comput. Appl. Math. 203 (2) (2007) 376-386, DOI: 10.1016/j.cam.2006.04.048

. E. O. Reséndiz-Flores and F. R. Saucedo-Zendejo, Int. J. Heat Mass Tran. 90 (2015) 239-245, DOI: 10.1016/j.ijheatmasstransfer.2015.06.023

. S. Tiwari and J. Kuhnert, Finite pointset method based on the projection method for simulations of the incompressible Navier-Stokes equations, in: Meshfree methods for partial differential equations, 2003.

. P. Stapór, Int. J. Numer. Method H. 26 (6) (2016) 1661-1683, DOI: 10.1108/HFF-01-2015-0018

Published
2019/04/17
How to Cite
Saucedo-Zendejo, F. R., & Resendiz-Flores, E. O. (2019). Transient Heat Transfer and Solidification Modelling in Direct-Chill Casting Using a Generalized Finite Differences Method. Journal of Mining and Metallurgy, Section B: Metallurgy, 55(1), 47. Retrieved from https://aseestant.ceon.rs/index.php/jmm/article/view/16553
Section
Original Scientific Paper