Formation mechanism of Fe-Mo master alloy by aluminothermic reduction of MoS2-Fe2O3 in the presence of lime

  • Mohammad Hossein Golmakani Department of Metallurgical Engineering, Faculty of Engineering, Ferdowsi University of Mashhad,Mashhad, Iran
  • Jalil Vahdati Khaki Department of Metallurgical Engineering, Faculty of Engineering, Ferdowsi University of Mashhad,Mashhad, Iran
  • Abolfazl Babakhani Department of Metallurgical Engineering, Faculty of Engineering, Ferdowsi University of Mashhad,Mashhad, Iran

Abstract


The reaction mechanism of MoS2-Fe2O3 aluminothermic reduction in the presence of lime using microwave-assisted combustion synthesis method was surveyed. Achieving technical feasibility in one-step production of ferromolybdenum along with sulfur removing in solid form are the main features of this novel process. Simultaneous Preliminary thermo-analytical investigations DSC/TGA and X-ray diffraction experiments during the heating process of 0.42 MoS2 +1.14 Al + 0.29 Fe2O3 +0.84CaO demonstrated four key sequential endothermic and exothermic reactions at 420, 540, 660, and 810 oC. The most noteworthy reactions involve evaporation of moisture and volatile matter, molybdenite roasting, simultaneous production of lateral compounds such as CaMoO4 and CaSO4, aluminum melting transition, and final termite reaction. Kinetics procedure of the system was conducted using a classical model-free approach by Kissinger–Akahira–Sunose (KAS) method. In this study, the activation energy was determined about 106.4 (kJ.mol-1) for thermite reaction in the temperature range of 810 to 918 oC.

Author Biographies

Mohammad Hossein Golmakani, Department of Metallurgical Engineering, Faculty of Engineering, Ferdowsi University of Mashhad,Mashhad, Iran
PhD Student in dpartment of Metallurgical Engineering
Jalil Vahdati Khaki, Department of Metallurgical Engineering, Faculty of Engineering, Ferdowsi University of Mashhad,Mashhad, Iran

Professor in dpartment of Metallurgical Engineering

 

Abolfazl Babakhani, Department of Metallurgical Engineering, Faculty of Engineering, Ferdowsi University of Mashhad,Mashhad, Iran
Professor in dpartment of Metallurgical Engineering

References

C.K. Gupta, Extractive metallurgy of molybdenum, CRC Press, USA, 1992.

M. Gasik, Technology of molybdenum ferroalloys, in: M. Gasik (editor) Handbook of Ferroalloys; Theory and Technology, Elsevier USA.2013, pp.387-396.

R. H. Eric, Production of ferroalloys, in: S. Seetharaman (Editor in chief), Treatise on Process Metallurgy, industrial process Part A, Elsevier Ltd ,USA, 2014,pp. 478-530.

C. J. Mahesh, Extractive metallurgy of molybdenum, in: M.Mishra (Editor), Review of extraction, processing, properties &application of reactive metals, TMS Annual Meeting, San Diego, 1999, pp.73-82.

E.L. Baker, A. Daniels, G.P. Voorhis, T. Verong, in: A. Crowson, E.S. Chen, J.A. Shields, P.R. Subramanian (Eds.), Molybdenum and Molybdenum Alloys, TMS Annual Meeting, Warrendale, PA,1998,pp.200-220

A. Khoshnevisan, H. Yoozbashizadeh, , J. Min. Metall. Sect. B-Metall. 48 (1) B (2012) 89 – 99

R. Padilla, M.C. Ruiz, and H.Y. Sohn, Metall. Mater. Trans.B, 28B (1997) 265-274.

O.k.Mehra, D.k.Bose, C.k.Gupta, , T. Indian. I. Metals. TP.698 (1973) 1-7.

T.R. Mankhand, P.M. Prasad, Metall. Trans. B. 13B (1982) 276- 282.

C. Lelievre. Stedman, C.A.Pickles, in: Bergman (Editor), Ferrous and Non-ferrous Alloy Processes, Ontario, 1990, pp. 63-75.

P.M.Prasad, T.M.Parkhand, Miner. Eng. 6 (1993) 857-871.

P.M. Prasad, T.R. Mankhand, A.J.K. Prasad, NML. Tech. J. 39 (1997) 39-58.

A.K. Suri, J.C. Sehra, C.K. Gupta, Miner. Process. Extr. Metall. Rev. 15 (1995) 23-29.

M.M. Afsahi, B.Abolpour, V. Kumar, M. Sohrabi, Miner. Process. Extr. Metall. Rev. 34(2013)151–175.

M.H. Golmakani, J. Vahdati khaki, A. Babakhani, Mater.Chem .Phys.194 (2017) 9-16.

R. J. Munz, W. H. Gauvin, AlChE. Journal. 21(1975) 1132-1142.

H. Nitta, K. Miura, Y. Iijima, Acta Materialia, 54 (2006) 2833–2847.

M. Schoenitz, S. Umbrajkar, E. L. Dreizin, j.propul.power, 23 (2007) 673-678.

B.-S. Kim, E. Kim, H.-S. Jeon, H.-I. Lee, J.-C. Lee, Mater. Trans. 49 (2008) 2147 - 2152.

B.-S. Kim, H.-I. Lee, Y.-Y. Choi, S. Kim, Mater.Trans. 50 (2009) 2669 – 2674.

B-S. Kim, S-B. Kim, H-I. Lee and Y.-Y.Choi, Mater. Trans. 52 (2011) 1288 - 1293.

M. GAN, X-H. FAN, X-L. CHEN, C-Q. WU, Z-Y JI, S-R WANG, et al., Trans. Nonferrous Met. Soc.26 (2016) 3015−3023.

M. Sharifitabar, J. Vahdati khaki, M. Haddad Sabzevar, Int. J. Refract. Met. Hard. Mater. 47 (2014) 93-101.

A.G. Merzhanov, J. Mater.Process. Technol. 56 (1996) 222-241.

L.M. Di, A. Calka, Z.L. Li, J.S. Williams, J. Appl. Phys. 78 (1995) 4118-4122.

Z. Du, C. Guo, C. Li, and W. Zhang, J Phase Equilib Diff. 30 (2009) 487-501.

J. Houserova, J. Vrestal, and M.Sob, CALPHAD. 29 (2005) 133–139.

M. Moukwa, S. Farrington and D. Youn, Thermochim. Acta, 195 (1992) 231-237.

A.Yolanda, M.Alonso and J. Carlos Abanades, Industrial & Engineering Chemistry Research 53, (2014)12594-12601.

Derrick Dean, Thermal Gravimetric Analysis, University of Alabama at Birmingham.https://www.uab.edu/engineering/home/images/downloads/TGA_UAB_TA_MAy_absolute_final_2014.pdf

A. Chychko, L. Teng, S. Seetharaman, Steel. Res. Int. 81(2010) 784–791.

J.Hammerschmidt, M. Wrobel , the Southern African Institute of Mining and Metallurgy, Sulphur and Sulphuric Acid Conference, Cape Town, south Africa, 2009, 86-100.

M. Rafiei, M.H. Enayati, F. Karimzadeh, Powder. Technol. 253 (2014) 553–560.

V. Leroya, D. Cancellieri, E Leoni, J-L. Ross, Thermochim. Acta. 497 (2010) 1–6.

R. Ebrahimi Kahrizsangi, M.H.Abbasi, A.Saidi, Iran. J. Chem. Chem. Eng. 26, (2007), 119-123.

P. Šimon, J. Therm. Anal. Calorim. 76 (2004) 123–132.

Published
2018/10/17
How to Cite
Golmakani, M. H., Vahdati Khaki, J., & Babakhani, A. (2018). Formation mechanism of Fe-Mo master alloy by aluminothermic reduction of MoS2-Fe2O3 in the presence of lime. Journal of Mining and Metallurgy, Section B: Metallurgy, 54(2), 233. Retrieved from https://aseestant.ceon.rs/index.php/jmm/article/view/16847
Section
Original Scientific Paper