Development of novel ultrafine grain Cu metal matrix composites reinforced with Ti-Cu-Co-M (M: Ni, Zr) amorphous-nanocrystalline powder

  • Dora Janovszky MTA-ME Materials Science Research Group, Miskolc, Miskolc, Hungary
  • Ferenc Kristaly Institute of Mineralogy and Geology, University of Miskolc, Miskolc, Hungary
  • Tamas Miko Institute of Physical Metallurgy, Metal Forming and Nanotechnology, University of Miskolc, Miskolc, Hungary
  • Maria Sveda MTA-ME Materials Science Research Group, Miskolc, Miskolc, Hungary
  • Anna Sycheva MTA-ME Materials Science Research Group, Miskolc, Miskolc, Hungary

Abstract


Novel ultrafine grain composites of Cu matrix reinforced with 2-50 wt. % of Ti48Cu39.5Ni10Co2.5 and Ti48Cu39.5Zr10Co2.5 (at. %) amorphous-nanocrystalline alloy particles have been fabricated by powder metallurgy. The composites showed a homogeneous structure. The characterization of composites was performed by optical and scanning electron microscopy (SEM), X-ray powder diffraction (XRD), micro- and macrohardness, as well as density measurements. After hot-pressing the crystallite size of Cu was smaller than 200 nm and nanocrystalline phases of reinforcing powder were 5-35 nm. Densities of 97-76 % relative to calculated values of consolidated composites were obtained, depending on the reinforcing weight fraction. Additionally, the mechanical properties and electrical resistivity of composites have been investigated. The results reveal that the 0.2% offset compressive yield strength of composites increases by two and five times, with respect to pure Cu matrix, for the composites reinforced with 2 and 50 wt. % of reinforcing particles, respectively. Electrical resistivity increases continuously, with higher values after 30 wt. % of addition. Changes in mechanical and electrical properties were produced by the increase of amorphous-nanocrystalline additive.

Author Biographies

Dora Janovszky, MTA-ME Materials Science Research Group, Miskolc, Miskolc, Hungary
PhD, senior research fellow
Ferenc Kristaly, Institute of Mineralogy and Geology, University of Miskolc, Miskolc, Hungary
PhD, senior research fellow
Tamas Miko, Institute of Physical Metallurgy, Metal Forming and Nanotechnology, University of Miskolc, Miskolc, Hungary
PhD, research fellow
Maria Sveda, MTA-ME Materials Science Research Group, Miskolc, Miskolc, Hungary
PhD, senior research fellow
Anna Sycheva, MTA-ME Materials Science Research Group, Miskolc, Miskolc, Hungary
PhD, senior research fellow

References

X. Qu, L. Zhang, M. Wuu, S. Ren, Review of metal matrix composites with high thermal conductivity for thermal management applications, Prog. Nat. Sci. Mater. Int., 21 (2011) 189-197.

R. Li, H. Kang, Z. Chen, G. Fan, C. Zou, W. Wang, S. Zhang, Y. Lu, J. Jie, Z. Cao, T. Wang, A promising structure for fabricating high strength and high electrical conductivity copper alloys, Sci. Rep., 6, 20799; doi: 10.1038/srep20799 (2016).

3 D. Zhou, W. Zeng, D. Zhang, A feasible ultrafine grained Cu matrix composite microstructure for achieving high strength and high electrical conductivity, J. Alloys. Compd., 682 (2016) 590-593.

4 Q. Han, R. Setchi, S. L. Evans, Synthesis and characterisation of advanced ball-milled Al-Al2O3 nanocomposites for selective laser melting, Powder. Technol., 297 (2016) 183-192.

5 M.T. Khorshid, J.B. Ferguson, B.F. Schultz, C.S. Kim, K. Cho, P.K. Rohatgi, Strengthening mechanisms of graphene- and Al2O3-reinforced aluminum nanocomposites synthesized by room temperature milling, Mater. Design., 92 (2016) 79-87.

6 Md. Ahasan, M. J. Davidson, Modeling Aspects of Hot Densification and Deformation Studies on Al-TiB2 Composite Preforms, Mater. Manuf. Process, 30 (2015) 1190-1195.

7 Y.C. Wang, S. Liang, J. Ren, X. Du, F. Liu, TiB2(-TiB)/Cu in-situ composites prepared by hot-press with the sintering temperature just beneath the melting point of copper, Mater. Charact., 121 (2016) 76-81.

8 M.Z. Sylwester, The Cu matrix cermets remarkably strengthened by TiB2 “in situ” synthesized via self-propagating high temperature synthesis, Mater. Design., 53 (2014) 758-765.

9 F. Wang, Y. Li, X. Wang, Y. Koizumi, Y. Kenta, A. Chiba, In-situ fabrication and characterization of ultrafine structured Cu-TiC composites with high strength and high conductivity by mechanical milling, J. Alloys Compd., 657 (2016) 122-132.

10 M. Krasnowski, S. Gierlotka, T. Kulik, TiC-Al composites with nanocrystalline matrix produced by consolidation of milled powders, Adv. Powder Technol., 26 (2015) 1269-1272.

11 M.R. Akbarpour, Analysis of Load Transfer Mechanism in Cu Reinforced with Carbon Nanotubes Fabricated by Powder Metallurgy Route, JMEPEG, 25 (2016) 1749-1756.

12 D. Markó, K.G. Prashanth, S. Scudino, Z. Wang, N. Ellendt, V. Uhlenwinkel, J. Eckert, Al-based metal matrix composites reinforced with Fe49.9Co35.1Nb7.7B4.5Si2.8 glassy powder: Mechanical behaviour under tensile loading, J. Alloys Compd., 615 (2014) S382-S385.

13 Ö. Balcı, K.G. Prashanth, S. Scudino, D. Ağaoğulları, İ. Duman, M.L. Öveçoğlu, V. Uhlenwinkel, J. Eckert, Effect of Milling Time and the Consolidation Process on the Properties of Al Matrix Composites Reinforced with Fe-Based Glassy Particles, Metals, 5 (2015) 669-685.

14 Z. Wang, K. Georgarakis, K.S. Nakayama, Y. Li, A.A. Tsarkov, G. Xie, D. Dudina, D.V. Louzguine-Luzgin and A.R. Yavari, Microstructure and mechanical behaviour of metallic glass fiber reinforced Al alloy matrix composites, Sci. Rep., 6 (2016) 24384.

T. Wang, Y. Wu, J. Si, X. Hui, Effects of Zr and Si on the Glass Forming Ability and Compressive Properties of Ti-Cu-Co-Sn Alloys, Metall. Trans. A, 46 (2015) 2381-2389.

M. Zhou, K. Hagos, H. Huang, M. Yang, L. Ma, Improved mechanical properties and pitting corrosion resistance of Zr65Cu17.5Fe10Al7.5 bulk metallic glass by isothermal annealing, J. Non-Crystall. Solids, 452 (2016) 50-56.

P. Bhuyan, S.N. Alam, D. Panda, L. Kumar, H. Singh, Synthesis and Characterization of Cu-Fe3Al Composites using Powder Metallurgy Route, Materials Today: Proceedings, 4 (2017) 213-223.

H. Singh, L. Kumar, S.N. Alam, Development of Cu Reinforced SiC Particulate Composites, IOP Conf. Series: Mater. Sci. Eng., 75 (2015) 012007.

K.A. Darling, E.L. Huskins, B.E. Schuster, Q. Wei, L.J. Kecskes, Mechanical properties of a high strength Cu-Ta composite at elevated temperature, Mater. Sci. Eng. A, 638 (2015) 322-328.

J.W. Kaczmar, K. Granat, A. Kurzawa, E. Grodzka, Physical Properties of Copper Based MMC Strengthened with Alumina, Arch. Foundry. Eng., 14 (2014) 85-90.

M. Orolínová, J. Ďurišin, K. Ďurišinová, Z. Danková, M. Besterci, The electrical properties of nanocrystalline Cu-Al2O3, Kovove. Mater., 53 (2015) 409-414.

X.H. Zhang, X.X. Li, H. Chen, T.B. Li, W. Su, S.D. Guo, Investigation on microstructure and properties of Cu-Al2O3 composites fabricated by a novel in-situ reactive synthesis, Mater. Design, 92 (2016) 58-63.

V. Rajkovic, D. Bozic, M.T. Jovanovic, Effects of copper and Al2O3 particles on characteristics of Cu-Al2O3 composites, Mater. Design, 31 (2010) 1962-1970.

C. Ayyappadas, A. Muthuchamy, A.R. Annamalai, D.K. Agrawal, An investigation on the effect of sintering mode on various properties of copper-graphene metal matrix composite, Adv. Powder Technol., 28 (2017) 1760-1768.

T. Varol, A. Canakci, The effect of type and ratio of reinforcement on the synthesis and characterization Cu-based nanocomposites by flake powder metallurgy, J. Alloys. Compd., 649 (2015) 1066-1074.

F.F. Han, A. Inoue, Y. Han, F. L. Kong, S. L. Zhu, E. Shalaan, F. Al-Marzouki, High formability of glass plus fcc-Al phases in rapidly solidified Al-based multicomponent alloy, J. Mater. Sci., 52 (2017) 1246-1254.

Z. Fu, B.E. MacDonald, D. Zhang, B. Wu, W. Chen, J. Ivanisenko, H. Hahn, E.J. Lavernia, Fcc nanostructured TiFeCoNi alloy with multi-scale grains and enhanced plasticity Scripta Materialia, 143 (2018) 108-112.

M. Sveda, A. Sycheva, T. Miko, F. Kristaly, A. Racz, T. Ferenczi, D. Janovszky, Effect of Ni and Zr on the microstructural evolution of Ti-based alloys during ball-milling, J. Non-Crystall. Solids, 473 (2017) 41-46.

G.E. Abrosimova, A.S. Aronin, Evolution of the Amorphous Phase Structure in Metal-Metal Type Metallic Glasses, J. Surf., Inv. 9 (2015) 887-893.

Z. Jiang, H. Kato, T. Ohsuna, J. Saida, A. Inoue, K. Saksl, H. Franz, K. Stahl, Origin of nondetectable X-ray diffraction peaks in nanocomposite CuTiZr alloys, Appl. Phys. Lett., 83 (2003) 3299-3301.

K. Durisinova, J. Durisin, M. Durisin, Microstructure and Properties of Nanocrystalline Copper Strengthened by a Low Amount of Al2O3 Nanoparticles, J. Mater. Eng. Perform., 26 (2017) 1057-1061.

M. Korać, Ž. Kamberović, Z. Anđić, M. Filipovic, Sintered Materials Based on Copper and Alumina Powders Synthesized by a Novel Method, Nanocomposites and Polymers with Analytical Methods, Dr. John Cuppoletti (Ed.), ISBN: 978-953-307-352-1, InTech, Shanghai, 2011, pp. 181-198.

Copper as electrical conductive material with above-standard performance properties, European Copper Institute, http://conductivity-app.org

S. Nachum, N.A. Flecka, M.F. Ashby, A. Colella, P. Matteazzi, The microstructural basis for the mechanical properties and electrical resistivity of nanocrystalline Cu-Al2O3, Mater. Sci. Eng. A, 527 (2010) 5065-5071.

Y.A. Sorkhe, H. Aghajani, A.T. Tabrizi, Synthesis and characterisation of Cu-TiO2 nanocomposite produced by thermochemical process, Powder Metall., 59 (2016) 107-111.

K.K. Chawla, N. Chawla, Metal-Matrix Composites, in: Kirk-Othmer Encyclopedia of Chemical Technology, John Wiley & Sons, 2000, http://onlinelibrary.wiley.com/doi/10.1002/0471238961.1305200103080123.a01.pub2/full.

Z.F. Zhang, G. He, J. Eckert, L. Schultz, Fracture Mechanisms in Bulk Metallic Glassy Materials, Phys. Rev. Lett., 91 (2003) 045505-1-425.

Published
2018/12/27
How to Cite
Janovszky, D., Kristaly, F., Miko, T., Sveda, M., & Sycheva, A. (2018). Development of novel ultrafine grain Cu metal matrix composites reinforced with Ti-Cu-Co-M (M: Ni, Zr) amorphous-nanocrystalline powder. Journal of Mining and Metallurgy, Section B: Metallurgy, 54(3), 349. Retrieved from https://aseestant.ceon.rs/index.php/jmm/article/view/17325
Section
Original Scientific Paper