Analysis of the growth kinetics of Fe2B layers by the integral method
Abstract
In this current study, an alternative approach based on the integral method was proposed to estimate the values of boron diffusion coefficients in the Fe2B layers grown at the surface of Armco iron. The set of differential algebraic equations (DAE) system was obtained to estimate the value of activation energy for boron diffusion when pack-boriding of Armco iron in the range of 1123 to 1273 K taking into account the boride incubation time.
The present model has been validated by making a comparison between the experimental value of Fe2B layer thickness obtained at 1253 K for 5 h and the predicted results by using two different approaches. A good agreement was observed between these two set of data.
Authors retain copyright of the published papers and grant to the publisher the non-exclusive right to publish the article, to be cited as its original publisher in case of reuse, and to distribute it in all forms and media.
The Author(s) warrant that their manuscript is their original work that has not been published before; that it is not under consideration for publication elsewhere; and that its publication has been approved by all co-authors, if any, as well as tacitly or explicitly by the responsible authorities at the institution where the work was carried out. The Author(s) affirm that the article contains no unfounded or unlawful statements and does not violate the rights of others. The author(s) also affirm that they hold no conflict of interest that may affect the integrity of the Manuscript and the validity of the findings presented in it. The Corresponding author, as the signing author, warrants that he/she has full power to make this grant on behalf of the Author(s). Any software contained in the Supplemental Materials is free from viruses, contaminants or worms.The published articles will be distributed under the Creative Commons Attribution ShareAlike 4.0 International license (CC BY-SA).
Authors are permitted to deposit publisher's version (PDF) of their work in an institutional repository, subject-based repository, author's personal website (including social networking sites, such as ResearchGate, Academia.edu, etc.), and/or departmental website at any time after publication.
Upon receiving the proofs, the Author(s) agree to promptly check the proofs carefully, correct any typographical errors, and authorize the publication of the corrected proofs.
The Corresponding author agrees to inform his/her co-authors, of any of the above terms.