Chlorine Corrosion of Blast Furnace Gas Pipelines: Analysis from Thermal Perspective
Abstract
With the broad application of dry dedusting of blast furnace gas (BFG), the issue of BFG pipeline corrosion comes up because of chlorine in the BFG. Existing methods in preventing the corrosion, such as spraying alkali or installing corrosion-resistant materials, require a significant amount of investment. This paper conducted a novel thermal analysis of the corrosion mechanism to support the study on corrosion prevention without using additional materials. Firstly, thermal models were established to reflect the relationships among the amount of condensation water, the mass transfer rate, the concentration of chloride ion and the ambient temperature. Secondly, the relationship between BFG temperature and the corrosion rate was obtained via a cyclic exposure experiment. Key factors that affect the pipeline corrosion under various BFG temperatures were identified. Finally, a control scheme of the BFG temperature was proposed to avoid the chlorine corrosion.
Authors retain copyright of the published papers and grant to the publisher the non-exclusive right to publish the article, to be cited as its original publisher in case of reuse, and to distribute it in all forms and media.
The Author(s) warrant that their manuscript is their original work that has not been published before; that it is not under consideration for publication elsewhere; and that its publication has been approved by all co-authors, if any, as well as tacitly or explicitly by the responsible authorities at the institution where the work was carried out. The Author(s) affirm that the article contains no unfounded or unlawful statements and does not violate the rights of others. The author(s) also affirm that they hold no conflict of interest that may affect the integrity of the Manuscript and the validity of the findings presented in it. The Corresponding author, as the signing author, warrants that he/she has full power to make this grant on behalf of the Author(s). Any software contained in the Supplemental Materials is free from viruses, contaminants or worms.The published articles will be distributed under the Creative Commons Attribution ShareAlike 4.0 International license (CC BY-SA).
Authors are permitted to deposit publisher's version (PDF) of their work in an institutional repository, subject-based repository, author's personal website (including social networking sites, such as ResearchGate, Academia.edu, etc.), and/or departmental website at any time after publication.
Upon receiving the proofs, the Author(s) agree to promptly check the proofs carefully, correct any typographical errors, and authorize the publication of the corrected proofs.
The Corresponding author agrees to inform his/her co-authors, of any of the above terms.