Ab initio and CALPHAD-type thermodynamic investigation of the Ti–Al–Zr system

  • Zixuan Deng Engineering Laboratory of Nuclear Energy Materials, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, Zhejiang 315201, China
  • Dapeng Zhao College of Biology, Hunan University, 410082 Changsha, China
  • Yeyan Huang Engineering Laboratory of Nuclear Energy Materials, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, Zhejiang 315201, China
  • Leilei Chen Engineering Laboratory of Nuclear Energy Materials, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, Zhejiang 315201, China
  • Houke Zou Engineering Laboratory of Nuclear Energy Materials, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, Zhejiang 315201, China
  • Jiang Yi Engineering Laboratory of Nuclear Energy Materials, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, Zhejiang 315201, China
  • Keke Chang Engineering Laboratory of Nuclear Energy Materials, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, Zhejiang 315201, China

Abstract


Ti–Al based alloys have been widely used in the aeronautics and aerospace. Adding alloying element Zr can significantly improve their high-temperature endurance and corrosion resistance. To investigate the influence of the addition of element Zr on the properties of the Ti–Al system, ab initio calculations and the CALPHAD (CALculation of PHAse Diagrams) method were used to evaluate the Ti–Al–Zr ternary system. Ab initio calculations were employed to obtain the formation enthalpies of intermetallic compounds. CALPHAD approach was used to optimize the thermodynamic parameters based on experiments. The experimental data of phase equilibria at 1073, 1273, 1473, and 1573 K, as well as a vertical section of the Ti3Al–Ti + 5 wt.% Zr were used to assess this system. The thermodynamic parameters of the binary Ti–Al, Al–Zr and Ti–Zr systems were acquired from recent assessments, and the ternary ones were evaluated in this work. The Ti–Al–Zr ternary dataset has been established and the calculated results are in close agreement with the experimental data on both thermodynamics and phase equilibria.

References

E. Bayraktar, C. Bathias, H. Xue, H. Tao, On the giga cycle fatigue behaviour of two-phase (α+γ) TiAl alloy, International Journal of Fatigue, 26 (2004) 1263-1275.

T.G. Nieh, L.M. Hsiung, J. Wadsworth, Superplastic behavior of a powder metallurgy TiAl alloy with a metastable microstructure, Intermetallics, 7 (1997) 163-170.

Y. Wang, Y. Liu, G.Y. Yang, L.I. Hui-Zhong, B. Tang, Microstructure of cast γ-TiAl based alloy solidified from β phase region, Transactions of Nonferrous Metals Society of China, 21 (2011) 215-222.

W. Chen, Y.P. Guan, Z.H. Wang, Hot deformation behavior of high Ti 6061 Al alloy, Transactions of Nonferrous Metals Society of China, 26 (2016) 369-377.

C.T. Liu, J.L. Wright, S.C. Deevi, Microstructures and properties of a hot-extruded TiAl containing no Cr, Materials Science and Engineering: A, 329 (2002) 416-423.

Y. Jin, J.N. Wang, J. Yang, Y. Wang, Microstructure refinement of cast TiAl alloys by β solidification, Scripta Materialia, 51 (2004) 113-117.

G. Hénaff, A.L. Gloanec, Fatigue properties of TiAl alloys, Intermetallics, 13 (2005) 543-558.

C.-z. QIU, L. Yong, L. HUANG, W. ZhANG, L. Bin, L. Bin, Effect of Fe and Mo additions on microstructure and mechanical properties of TiAl intermetallics, Transactions of Nonferrous Metals Society of China, 22 (2012) 521-527.

A. Luo, M. Pekguleryuz, Cast magnesium alloys for elevated temperature applications, Journal of Materials Science, 29 (1994) 5259-5271.

Y. Ke, H. Duan, Y. Sun, Effect of yttrium and erbium on the microstructure and mechanical properties of Ti–Al–Nb alloys, Materials Science and Engineering: A, 528 (2010) 220-225.

G. Fox-Rabinovich, D. Wilkinson, S. Veldhuis, G. Dosbaeva, G. Weatherly, Oxidation resistant Ti-Al-Cr alloy for protective coating applications, Intermetallics, 14 (2006) 189-197.

K. Hashimoto, H. Doi, K. Kasahara, T. Tsujimoto, T. Suzuki, Effects of third elements on the structures of TiAl-based alloys, Journal of the Japan Institute of Metals, 52 (1988) 816-825.

X. Jiang, Y. Zhou, Z. Feng, C. Xia, C. Tan, S. Liang, X. Zhang, M. Ma, R. Liu, Influence of Zr content on β-phase stability in α-type Ti–Al alloys, Materials Science and Engineering: A, 639 (2015) 407-411.

G. Fan, X. Song, M. Quan, Z. Hu, Mechanical alloying and thermal stability of Al67Ti25M8 (M= Cr, Zr, Cu), Materials Science and Engineering: A, 231 (1997) 111-116.

N. Belov, A. Alabin, I. Matveeva, D. Eskin, Effect of Zr additions and annealing temperature on electrical conductivity and hardness of hot rolled Al sheets, Transactions of Nonferrous Metals Society of China, (2015).

X.-y. LUe, E.-j. GUO, P. Rometsch, L.-j. WANG, Effect of one-step and two-step homogenization treatments on distribution of Al3Zr dispersoids in commercial AA7150 aluminium alloy, Transactions of Nonferrous Metals Society of China, 22 (2012) 2645-2651.

W. Feng, Q. Dong, Z.-l. Liu, J. Taylor, M. Easton, M.-x. Zhang, Crystallographic study of Al3Zr and Al3Nb as grain refiners for Al alloys, Transactions of Nonferrous Metals Society of China, 24 (2014) 2034-2040.

X. Liu, H. Luo, Y. Lu, J. Han, J. Li, Y. Guo, Y. Huang, C. Wang, Thermodynamic Assessment of the Nb-Si-Ta System, Journal of Phase Equilibria and Diffusion, 38 (2017) 897-905.

K. Chang, B. Hallstedt, D.J.C.o.M. Music, Thermodynamic and Electrochemical Properties of the Li–Co–O and Li–Ni–O Systems, Chemistry of Materials, 24 (2012) 97–105.

K. Chang, S. Liu, D. Zhao, Y. Du, L. Zhou, L.J.T.A. Chen, Thermodynamic description of the Al–Cu–Mg–Mn–Si quinary system and its application to solidification simulation, Thermochimica Acta, 512 (2011) 258-267.

L. Kaufman, H. Nesor, Coupled phase diagrams and thermochemical data for transition metal binary systems—V, Calphad, 2 (1978) 325-348.

W.W. Liang, A thermodynamic assessment of the aluminum-titanium system, Calphad, 7 (1983) 13-20.

J.L. Murray, Phase diagrams of binary titanium alloys, ASM international, (1987) 340-345.

J.L. Murray, Calculation of the titanium-aluminum phase diagram, Metallurgical Transactions A, 19 (1988) 243-247.

U. Kattner, J.-C. Lin, Y. Chang, Thermodynamic assessment and calculation of the Ti-Al system, Metallurgical Transactions A, 23 (1992) 2081-2090.

F. Zhang, S. Chen, Y. Chang, U. Kattner, A thermodynamic description of the Ti-Al system, Intermetallics, 5 (1997) 471-482.

I. Ansara, A. Dinsdale, M. Rand, COST 507, Thermochemical database for light metal alloys, 2 (1998) 211-214.

I. Ohnuma, Y. Fujita, H. Mitsui, K. Ishikawa, R. Kainuma, K. Ishida, Phase equilibria in the Ti–Al binary system, Acta Materialia, 48 (2000) 3113-3123.

A. Grytsiv, P. Rogl, H. Schmidt, G. Giester, Constitution of the ternary system Al-Ru-Ti (Aluminum-Ruthenium-Titanium), Journal of Phase Equilibria and Diffusion, 24 (2003) 511-527.

R. Schmid-Fetzer, Al-Ti (Aluminium-Titanium), MSIT Binary Evaluation Program, in MSIT Workplace, Effenberg, G.(Ed.), MSI, Materials Science International Services, GmbH, Stuttgart, (2003).

V. Raghavan, Al-Ti (aluminum-titanium), Journal of Phase Equilibria and Diffusion, 26 (2005) 171-172.

J. Braun, Strukturelle und konstitutionelle Untersuchungen an intermetallischen Phasen im System Ti-Al, (1999).

J. Braun, M. Ellner, On the partial atomic volume of aluminium in the titanium-rich phases of the binary system Ti-Al, Zeitschrift für Metallkunde, 91 (2000) 389-392.

J. Braun, M. Ellner, Phase equilibria investigations on the aluminum-rich part of the binary system Ti-Al, Metallurgical and Materials Transactions A, 32 (2001) 1037-1047.

J.C. Schuster, M. Palm, Reassessment of the binary aluminum-titanium phase diagram, Journal of Phase Equilibria and Diffusion, 27 (2006) 255-277.

V. Witusiewicz, A. Bondar, U. Hecht, S. Rex, T.Y. Velikanova, The Al–B–Nb–Ti system: III. Thermodynamic re-evaluation of the constituent binary system Al–Ti, Journal of Alloys and Compounds, 465 (2008) 64-77.

J. Murray, A. Peruzzi, J. Abriata, The Al-Zr (aluminum-zirconium) system, Journal of Phase Equilibria and Diffusion, 13 (1992) 277-291.

H. Okamoto, Al-Zr (aluminum-zirconium), Journal of phase equilibria, 14 (1993) 259-260.

A. Peruzzi, Reinvestigation of the Zr-rich end of the Zr-Al equilibrium phase diagram, Journal of Nuclear Materials, 186 (1992) 89-99.

G. Batalin, E. Beloborodova, V. Nerubaschenko, V. Galochka, L. Slyuzko, Thermodynamic Properties of Liquid Solutions in the Aluminum-Zirconium System, Izv. Vyssh. Ucheb. Zaved. Tsvetn. Metall, 3 (1982) 74-77.

R. Klein, I. Jacob, P. O'Hare, R. Goldberg, Solution-calorimetric determination of the standard molar enthalpies of formation of the pseudobinary compounds Zr (AlxFe1-x) 2 at the temperature 298.15 K, The Journal of Chemical Thermodynamics, 26 (1994) 599-608.

Y.O. Esin, N. Bobrov, M. Petrushevsky, P. Geld, Enthalpy of Formation of Molten Alloys of Aluminum With Titanium and Zirconium, Izv. Akad. Nauk SSR Met., (1974) 104-109.

Y.O. Esin, N. Serebrennikov, E. Pletneva, V. Kapustkin, Temperature dependence of enthalpy and heat capacity of zirconium aluminides in solid and liquid states, Izvestiya Vysshikh Uchebnykh Zavedenij. Chernaya Metallurgiya, (1987) 1-3.

T. Wang, Z. Jin, J.-C. Zhao, Thermodynamic assessment of the Al-Zr binary system, Journal of Phase Equilibria and Diffusion, 22 (2001) 544-551.

S.N. Tiwari, K. Tangri, The solid solubility of aluminum in α-zirconium, Journal of Nuclear Materials, 34 (1970) 92-96.

R. Kematick, H. Franzen, Thermodynamic study of the zirconium-aluminum system, Journal of Solid State Chemistry, 54 (1984) 226-234.

P. Malek, M. JaneČek, B. Smola, P. BartuŠka, J. PleŠtil, Structure and properties of rapidly solidified Al-Zr-Ti alloys, Journal of Materials Science, 35 (2000) 2625-2633.

H. King, Crystal Structures of the Elements at 25° C, Journal of Phase Equilibria and Diffusion, 2 (1981) 401-402.

T.B. Massalski, J.L. Murray, L.H. Bennett, H. Baker, Binary alloy phase diagrams, American Society for Metals1990.

J. Schuster, Al-Zr (Aluminium-Zirconium)', MSIT Binary Evaluation Program, MSIT Workplace, (2003).

M. Karpets, Y.V. Milman, O. Barabash, N. Korzhova, O. Senkov, D. Miracle, T. Legkaya, I. Voskoboynik, The influence of Zr alloying on the structure and properties of Al3Ti, Intermetallics, 11 (2003) 241-249.

J.L. Murray, Phase diagrams of binary titanium alloys, Monograph, (1987).

J. Murray, The Ti− Zr (Titanium-Zirconium) system, Bulletin of Alloy Phase Diagrams, 2 (1981) 197-201.

V. Kuprina, V. Bernard, A. Grigor'ev, E. Sokolovskaya, SOLID-STATE TRANSFORMATIONS OF TITANIUM--ZIRCONIUM ALLOYS, Vestn. Moskov. Univ., Ser. II, Khim., No. 5, 69-73 (Sept.-Oct. 1966). (1966).

J. Blacktop, J. Crangle, B. Argent, The α→ β transformation in the Ti-Zr system and the influence of additions of up to 50 at.% Hf, Journal of the Less Common Metals, 109 (1985) 375-380.

K.H. Kumar, P. Wollants, L. Delacy, Thermodynamic assessment of the Ti-Zr system and calculation of the Nb-Ti-Zr phase diagram, Journal of Alloys and Compounds, 206 (1994) 121-127.

I.I.K. N. I. Shirokova; T. T. Nartova, Equilibria and Properties of Ti-Zr-Al Alloys, Izv. Akad. Nauk SSR Met., 4 (1968) 183-.

Y.F. R. Kainuma *, H. Mitsui, I. Ohnuma, K. Ishida, Phase equilibria among a (hcp), b (bcc) and g (L10) phases in Ti-Al base ternary alloys, Intermetallics, (2000) 855-867.

F. Yang, F.H. Xiao, S.G. Liu, S.S. Dong, L.H. Huang, Q. Chen, G.M. Cai, H.S. Liu, Z.P. Jin, Isothermal section of Al–Ti–Zr ternary system at 1273K, Journal of Alloys and Compounds, 585 (2014) 325-330.

K.-l. LÜ, F. Yang, Z.-y. Xie, H.-s. Liu, G.-m. Cai, Z.-p. Jin, Isothermal section of Al–Ti–Zr ternary system at 1073 K, Transactions of Nonferrous Metals Society of China, 26 (2016) 3052-3058.

G. Ghosh, S. Vaynman, M. Asta, M.E. Fine, Stability and elastic properties of L12-(Al,Cu)3(Ti,Zr) phases: Ab initio calculations and experiments, Intermetallics, 15 (2007) 44-54.

M. Premkumar, K. Prasad, A. Singh, Structure and stability of the B2 phase in Ti–25Al–25Zr alloy, Intermetallics, 17 (2009) 142-145.

G. Kresse, D.J.P.R.B. Joubert, From ultrasoft pseudopotentials to the projector augmented-wave method, 59 (1999) 1758.

H.J. Monkhorst, J.D.J.P.r.B. Pack, Special points for Brillouin-zone integrations, 13 (1976) 5188.

N. Saunders, A.P. Miodownik, CALPHAD (Calculation of Phase Diagrams) A Comprehensive Guide 1st Ed (1998).

A.T. Dinsdale, SGTE data for pure elements, Calphad, 15 (1991) 317-425.

O. Redlich, A. Kister, Thermodynamics of nonelectrolyte solutions-xyt relations in a binary system, Industrial & Engineering Chemistry, 40 (1948) 341-345.

J.-O. Andersson, T. Helander, L. Höglund, P. Shi, B. Sundman, Thermo-Calc & DICTRA, computational tools for materials science, Calphad, 26 (2002) 273-312.

O. Kubaschewski, W. Dench, The heats of formation in the systems titanium-aluminium and titanium-iron, Acta Metallurgica, 3 (1955) 339-346.

S. Meschel, O. Kleppa, J. Faulkner, R. Jordan, Metallic alloys: experimental and theoretical perspectives, NATO ASI Series E: Applied Sciences, 256 (1994) 103.

M. Nassik, F. Chrifi-Alaoui, K. Mahdouk, J. Gachon, Calorimetric study of the aluminium–titanium system, Journal of Alloys and Compounds, 350 (2003) 151-154.

K. Rzyman, Z. Moser, J.C. Gachon, Calorimetric studies of the enthalpies of formation of Al,Ti, AlTi, AlTi3 and Al2Ti compounds, Archives of Metallurgy & Materials, 49 (2004) 545-563.

C. Alcock, S. Zador, K. Jacob, Zirconium: Physico chemical properties of its compounds and alloys, (1976).

S. Meschel, O. Kleppa, Standard enthalpies of formation of 4d aluminides by direct synthesis calorimetry, Journal of Alloys and Compounds, 191 (1993) 111-116.

N. Saunders, Calculated stable and metastable phase equilibria in Al-Li-Zr alloys, 80 (1989).

Published
2020/01/29
How to Cite
Deng, Z., Zhao, D., Huang, Y., Chen, L., Zou, H., Yi, J., & Chang, K. (2019). Ab initio and CALPHAD-type thermodynamic investigation of the Ti–Al–Zr system. Journal of Mining and Metallurgy, Section B: Metallurgy, 55(3), 427-437. Retrieved from https://aseestant.ceon.rs/index.php/jmm/article/view/19248
Section
Original Scientific Paper