Generalised stacking fault energies of copper alloys – density functional theory calculations
Abstract
Generalised stacking fault energies of copper alloys have been calculated using density functional theory. Stacking fault energy of copper alloys is correlated with the d-electrons number of transition metal alloying element. The tendency to twining is also modified by the presence of alloying element in the deformation plane. The results suggest that Cu –transition metal alloys with such elements as Cr, Mo, W, Mn, Re are expected to exhibit great work hardening rate due to the tendency to emission of the partial dislocations.
References
B.B. Zhang, N.R. Tao, K. Lu, Scr. Mater. 129 (2017) 39–43. http://doi.org/10.1016/j.scriptamat.2016.10.022
Y. Sakai, H.J. Schneider-Muntau, Acta Mater. 45 (1997) 1017–1023. http://doi.org/10.1016/S1359-6454(96)00248-0
Y. Sakai, T. Hibaru, K. Miura, A. Matsuo, K. Kawaguchi, K. Kindo, MRS Adv. 1 (2016) 1137–1148. http://doi.org/10.1557/adv.2015.4
A. Kauffmann, D. Geissler, J. Freudenberger, Mater. Sci. Eng. A 651 (2016) 567–573. http://doi.org/10.1016/j.msea.2015.10.119
C. Zhu, A. Ma, J. Jiang, X. Li, D. Song, D. Yang, Y. Yuan, J. Chen, J. Alloys Compd. 582 (2014) 135–140. http://doi.org/10.1016/j.jallcom.2013.08.007
S.F. Abbas, S. Seo, K.-T. Park, B. Kim, T. Kim, J. Alloys Compd. 720 (2017) 8–16. http://doi.org/10.1016/j.jallcom.2017.05.244
K.M. Youssef, M.A. Abaza, R.O. Scattergood, C.C. Koch, Mater. Sci. Eng. A 711 (2018) 350–355. http://doi.org/10.1016/j.msea.2017.11.060
J. Han, J. Sun, Y. Han, H. Zhu, L. Fang, Metals (Basel). 8 (2018) 344. http://doi.org/10.3390/met8050344, http://www.mdpi.com/2075-4701/8/5/344
A. Hosseinzadeh Delandar, R. Sandström, P. Korzhavyi, Metals (Basel). 8 (2018) 772. http://doi.org/10.3390/met8100772, http://www.mdpi.com/2075-4701/8/10/772
Q. Lei, Z. Li, M.P. Wang, L. Zhang, Z. Xiao, Y.L. Jia, Mater. Sci. Eng. A 527 (2010) 6728–6733. http://doi.org/10.1016/j.msea.2010.07.023
L. Lu, X. Chen, X. Huang, K. Lu, Science (80-. ). 323 (2009) 607–610. http://doi.org/10.1126/science.1167641, http://www.sciencemag.org/cgi/doi/10.1126/science.1167641
J. Sun, C. Li, J. Han, X. Shao, X. Yang, H. Liu, D. Song, A. Ma, Metals (Basel). 7 (2017) 438. http://doi.org/10.3390/met7100438, http://www.mdpi.com/2075-4701/7/10/438
C.Z. Xu, Q.J. Wang, M.S. Zheng, J.W. Zhu, J.D. Li, M.Q. Huang, Q.M. Jia, Z.Z. Du, Mater. Sci. Eng. A 459 (2007) 303–308. http://doi.org/10.1016/j.msea.2007.01.105
L. Lu, Y. Shen, X. Chen, L. Qian, K. Lu, Science (80-. ). 304 (2004) 422–426. http://doi.org/10.1126/science.1092905, http://www.sciencemag.org/cgi/doi/10.1126/science.1092905
Y. Zhang, N.R. Tao, K. Lu, Scr. Mater. 60 (2009) 211-213. http://doi.org/10.1016/j.scriptamat.2008.10.005
H. Xu, I. Qin, H. Clauberg, B. Chylak, V.L. Acoff, Scr. Mater. 115 (2016) 1–5. http://doi.org/10.1016/j.scriptamat.2015.12.025
C.W. Schmidt, P. Knödler, H.W. Höppel, M. Göken, Metals (Basel). 1 (2011) 65–78. http://doi.org/10.3390/met1010065, http://www.mdpi.com/2075-4701/1/1/65
Y.Z. Tian, S.D. Wu, Z.F. Zhang, R.B. Figueiredo, N. Gao, T.G. Langdon, Scr. Mater. 65 (2011) 477–480. http://doi.org/10.1016/j.scriptamat.2011.06.004.
R.K. Islamgaliev, K.M. Nesterov, J. Bourgon, Y. Champion, R.Z. Valiev, J. Appl. Phys. 115 (2014) 1–5. http://doi.org/10.1063/1.4874655.
X. Chen, F. Jiang, J. Jiang, P. Xu, M. Tong, Z. Tang, Metals (Basel). 8 (2018) 227. http://doi.org/10.3390/met8040227, http://www.mdpi.com/2075-4701/8/4/227
M.A. Bhatia, M. Rajagopalan, K.A. Darling, M.A. Tschopp, K.N. Solanki, Mater. Res. Lett. 5 (2017) 48–54. http://doi.org/10.1080/21663831.2016.1201160
L.I. Zaynullina, I. V Alexandrov, W. Wei, Defect Diffus. Forum 385 (2018) 195–199. http://doi.org/10.4028/www.scientific.net/DDF.385.195
R. Li, S. Zhang, H. Kang, Z. Chen, F. Yang, W. Wang, C. Zou, T. Li, T. Wang, J. Alloys Compd. 693 (2017) 592–600. http://doi.org/10.1016/j.jallcom.2016.09.209
E.B. Tadmor, N. Bernstein, J. Mech. Phys. Solids 52 (2004) 2507–2519. http://doi.org/10.1016/j.jmps.2004.05.002
M. Muzyk, Z. Pakiela, K.J. Kurzydlowski, Scr. Mater. 64 (2011) 916–918. http://doi.org/10.1016/j.scriptamat.2011.01.034
M. Muzyk, Z. Pakiela, K.J. Kurzydlowski, Scr. Mater. 66 (2012) 219–222. http://doi.org/10.1016/j.scriptamat.2011.10.038
D.J. Siegel, Appl. Phys. Lett. 87 (2005) 121901–3. http://doi.org/10.1063/1.2051793
P. Kwasniak, M. Muzyk, H. Garbacz, K.J. Kurzydlowski, Mater. Chem. Phys. 154 (2015) 137–143. http://doi.org/10.1016/j.matchemphys.2015.01.056
P. Kwasniak, M. Muzyk, H. Garbacz, K.J. Kurzydlowski, Mater. Lett. 94 (2013) 92–94. http://doi.org/10.1016/j.matlet.2012.12.002
P. Kwasniak, M. Muzyk, H. Garbacz, K.J. Kurzydlowski, Mater. Sci. Eng. A 590 (2014) 74–79. http://doi.org/10.1016/j.msea.2013.10.004
M. Muzyk, Z. Pakieła, K.J. Kurzydłowski, Metals (Basel). 8 (2018) 823. http://doi.org/10.3390/met8100823, www.mdpi.com/journal/metals.
W. Li, S. Lu, Q.-M.M. Hu, S.K. Kwon, B. Johansson, L. Vitos, J. Phys. Condens. Matter 26 (2014) 265005. http://doi.org/10.1088/0953-8984/26/26/265005
Q.Q. Shao, L.H. Liu, T.W. Fan, D.W. Yuan, J.H. Chen, J. Alloys Compd. 726 (2017) 601–607. http://doi.org/10.1016/j.jallcom.2017.07.332
G.H. Xiao, N.R. Tao, K. Lu, Scr. Mater. 65 (2011) 119–122. http://doi.org/10.1016/j.scriptamat.2011.03.005.
J.C. Pang, Q.Q. Duan, S.D. Wu, S.X. Li, Z.F. Zhang, Scr. Mater. 63 (2010) 1085–1088. http://doi.org/10.1016/j.scriptamat.2010.08.009.
A. Shadkam, Scr. Mater. 135 (2017) 68–71. http://doi.org/10.1016/j.scriptamat.2017.03.024
L. Song, Y. Yuan, Z. Yin, Int. J. Nonferrous Metall. 2 (2013) 100–105. http://doi.org/10.4236/ijnm.2013.23014.
G. Kresse, J. Furthmüller, Comput. Mater. Sci. 6 (1996) 15–50. http://doi.org/10.1016/0927-0256(96)00008-0
G. Kresse, J. Furthmüller, Phys. Rev. B - Condens. Matter Mater. Phys. 54 (1996) 11169–11186. http://doi.org/10.1103/PhysRevB.54.11169
P.E. Blöchl, Phys. Rev. B 50 (1994) 17953–17979. http://doi.org/10.1103/PhysRevB.50.17953
J.P. Perdew, K. Burke, M. Ernzerhof, Phys. Rev. Lett. 77 (1996) 3865–3868. http://doi.org/10.1103/PhysRevLett.77.3865
D. Joubert, Phys. Rev. B - Condens. Matter Mater. Phys. 59 (1999) 1758–1775. http://doi.org/10.1103/PhysRevB.59.1758
C. Brandl, P.M. Derlet, H. Van Swygenhoven, Phys. Rev. B - Condens. Matter Mater. Phys. 76 (2007) 1–8. http://doi.org/10.1103/PhysRevB.76.054124
S. Ogata, J. Li, S. Yip, Science (80-. ). 298 (2002) 807–811. http://doi.org/10.1126/science.1076652
X.Z. Wu, R. Wang, S.F. Wang, Q.Y. Wei, Appl. Surf. Sci. 256 (2010) 6345–6349. http://doi.org/10.1016/j.apsusc.2010.04.014
S. Kibey, J.B. Liu, D.D. Johnson, H. Sehitoglu, Appl. Phys. Lett. 89 (2006) 191911. http://doi.org/10.1063/1.2387133
S. Ogata, J. Li, S. Yip, Phys. Rev. B 71 (2005) 224102. http://doi.org/10.1103/PhysRevB.71.224102
J.P. Hirth, J. Lothe, Theory of Dislocations, 2nd ed., Wiley, New York, 1982, p. 182.
C.B. Carter, I.L.F. Ray, Philos. Mag. 35 (1977) 189–200. http://doi.org/10.1080/14786437708235982
J.M. Howe, Interfaces in Materials, Wiley, New York, 1997, p. 202.
S. Shao, J. Wang, Metals (Basel). 5 (2015) 1887–1901. http://doi.org/10.3390/met5041887
H. Wei, Y. Cui, H. Cui, C. Zhou, L. Hou, Y. hui Wei, J. Alloys Compd. 763 (2018) 835–843. http://doi.org/10.1016/j.jallcom.2018.06.043
Z.Y. Wang, D. Han, X.W. Li, Mater. Sci. Eng. A 679 (2017) 484–492. http://doi.org/10.1016/j.msea.2016.10.064
I.R. Harris, I.L. Dillamore, R.E. Smallman, B.E.P. Beeston, Philos. Mag. 14 (1966) 325–333. http://doi.org/10.1080/14786436608219015
S. Nagarjuna, M. Srinivas, K. Balasubramanian, D.S. Sarma, Mater. Sci. Eng. A 259 (1999) 34–42. http://doi.org/10.1016/S0921-5093(98)00882-X
J. Stasic, D. Bozic, J. Alloys Compd. 762 (2018) 231–236. http://doi.org/10.1016/j.jallcom.2018.05.135
S. Wei, L. Zhang, S. Zheng, X. Wang, J. Wang, Scr. Mater. 159 (2019) 104–108. http://doi.org/10.1016/j.scriptamat.2018.09.031
Q. Guo, G.B. Thompson, Acta Mater. 148 (2018) 63–71. http://doi.org/10.1016/j.actamat.2018.01.023
A. Korneva, B. Straumal, A. Kilmametov, R. Chulist, P. Straumal, P. Zieba, Mater. Charact. 114 (2016) 151–156. http://doi.org/10.1016/j.matchar.2016.02.017
W. He, E. Wang, L. Hu, Y. Yu, H. Sun, J. Mater. Process. Technol. 208 (2008) 205–210. http://doi.org/10.1016/j.jmatprotec.2007.12.107
Q.J. Wang, Z.Z. Du, L. Luo, W. Wang, J. Alloys Compd. 526 (2012) 39–44. http://doi.org/10.1016/j.jallcom.2012.02.102
K.X. Wei, W. Wei, F. Wang, Q.B. Du, I. V Alexandrov, J. Hu, Mater. Sci. Eng. A 528 (2011) 1478–1484. http://doi.org/10.1016/j.msea.2010.10.059
J. Guo, J. Rosalie, R. Pippan, Z. Zhang, Scr. Mater. 133 (2017) 41–44. http://doi.org/10.1016/j.scriptamat.2017.02.009
A. Nortmann, C. Schwink, Acta Mater. 45 (1997) 2051–2058. http://doi.org/10.1016/S1359-6454(96)00293-5.
X.X. Wu, X.Y. San, X.G. Liang, Y.L. Gong, X.K. Zhu, Mater. Des. 47 (2013) 372–376. http://doi.org/10.1016/j.matdes.2012.12.006.
O. Engler, Acta Mater. 48 (2000) 4827–4840. http://doi.org/10.1016/S1359-6454(00)00272-X.
J. Eckert, J.C. Holzer, C.E.K. Iii, W.L. Johnson, J. Appl. Phys. 73 (1993) 2794–2802. http://doi.org/10.1063/1.353055.
A. Bachmaier, M. Kerber, D. Setman, R. Pippan, Acta Mater. 60 (2012) 860–871. http://doi.org/10.1016/j.actamat.2011.10.044
M. Mojtahedi, M. Goodarzi, M.R. Aboutalebi, M. Ghaffari, V. Soleimanian, J. Alloys Compd. 550 (2013) 380–388. http://doi.org/10.1016/j.jallcom.2012.10.112
N. Wanderka, U. Czubayko, V. Naundorf, V.A. Ivchenko, A.Y. Yermakov, M.A. Uimin, H. Wollenberger, Ultramicroscopy 89 (2001) 189–194. http://doi.org/10.1016/S0304-3991(01)00104-8
L. Fu, J. Yang, Q. Bi, W. Liu, Philos. Mag. Lett. 91 (2011) 78–85. http://doi.org/10.1080/09500839.2010.533132
Y. Zhang, J. Guo, J. Chen, C. Wu, K.S. Kormout, P. Ghosh, Z. Zhang, J. Alloys Compd. (2018). http://doi.org/10.1016/j.jallcom.2018.10.275, https://linkinghub.elsevier.com/retrieve/pii/S0925838818339501
A. Bachmaier, G.B. Rathmayr, J. Schmauch, N. Schell, A. Stark, N. Jonge, R. Pippan, J. Mater. Res. 1 (2018) 1–11. http://doi.org/10.1557/jmr.2018.185
S. Lu, Q. Hu, E.K. Delczeg-Czirjak, B. Johansson, L. Vitos, Acta Mater. 60 (2012) 4506–4513. http://doi.org/10.1016/j.actamat.2012.04.024
S. Koda, J. Phys. Soc. Japan 19 (1964) 2356–2357. http://doi.org/10.1143/JPSJ.19.2356
X. Liu, R. Hao, S. Mao, S.J. Dillon, Scr. Mater. 130 (2017) 178–181. http://doi.org/10.1016/j.scriptamat.2016.11.038
S.W. Lee, M.Y. Huh, E. Fleury, J.C. Lee, Acta Mater. 54 (2006) 349–355. http://doi.org/10.1016/j.actamat.2005.09.007
N. Mattern, P. Jóvári, I. Kaban, S. Gruner, A. Elsner, V. Kokotin, H. Franz, B. Beuneu, J. Eckert, J. Alloys Compd. 485 (2009) 163–169. http://doi.org/10.1016/j.jallcom.2009.05.111
D. Wang, Y. Li, B.B. Sun, M.L. Sui, K. Lu, E. Ma, 2Applied Phys. Lett. 84 (2004) 4029–4031. http://doi.org/10.1016/S1359-6462(02)00055-6
Y.Q. Wang, J.Y. Zhang, X.Q. Liang, K. Wu, G. Liu, J. Sun, Acta Mater. 95 (2015) 132–144. http://doi.org/10.1016/j.actamat.2015.05.007
M. Kapoor, T. Kaub, K.A. Darling, B.L. Boyce, G.B. Thompson, Acta Mater. 126 (2017) 564–575. http://doi.org/10.1016/j.actamat.2016.12.057
R. Lei, M. Wang, S. Xu, H. Wang, G. Chen, Metals (Basel). 6 (2016) 194. http://doi.org/10.3390/met6090194, http://www.mdpi.com/2075-4701/6/9/194
J.Y. Zhang, J.T. Zhao, X.G. Li, Y.Q. Wang, K. Wu, G. Liu, J. Sun, Acta Mater. 143 (2018) 55–66. http://doi.org/10.1016/j.actamat.2017.09.039.
J. Cornejo, V. Martínez, S. Ordoñez, Key Eng. Mater. 189–191 (2001) 561–566. http://doi.org/10.4028/www.scientific.net/KEM.189-191.561, http://www.scientific.net/KEM.189-191.561
X. He, X.Y. Li, B.X. Liu, J. Phys. Soc. Japan 72 (2003) 3032–3034. http://doi.org/10.1143/JPSJ.72.3032.
S.A. Martynova, E.Y. Filatov, S. V Korenev, N. V Kuratieva, L.A. Sheludyakova, P.E. Plusnin, Y. V Shubin, E.M. Slavinskaya, A.I. Boronin, J. Solid State Chem. 212 (2014) 42–47. http://doi.org/10.1016/j.jssc.2014.01.008
S. Porobova, T. Markova, V. Klopotov, A. Klopotov, O. Loskutov, V. Vlasov, AIP Conf. Proc. 1698 (2016) 2–9. http://doi.org/10.1063/1.4937827
Y.Z. Tian, Z.F. Zhang, Scr. Mater. 66 (2012) 65–68. http://doi.org/10.1016/j.scriptamat.2011.09.024
I.H. Lee, S.I. Hong, K.H. Lee, J. Korean Inst. Met. Mater. 50 (2012) 931–937. http://doi.org/10.3365/KJMM.2012.50.12.931
K.S. Kormout, B. Yang, R. Pippan, Adv. Eng. Mater. 17 (2015) 1828–1834. http://doi.org/10.1002/adem.201500109
Y.Z. Tian, J.J. Li, P. Zhang, S.D. Wu, Z.F. Zhang, M. Kawasaki, T.G. Langdon, Acta Mater. 60 (2012) 269–281. http://doi.org/10.1016/j.actamat.2011.09.058
Y. Sakai, K. Inoue, H. Maeda, Acta Metall. Mater. 43 (1995) 1517–1522. https://doi.org/10.1016/0956-7151(94)00376-S
Y. Zhong, A. Saengdeejing, L. Kecskes, B. Klotz, Z. Liu, Acta Mater. 61 (2013) 660–669. http://doi.org/10.1016/j.actamat.2012.10.014
D. Liang, Y. Liu, J. Alloys Compd. 426 (2006) 101–105. http://doi.org/10.1016/j.jallcom.2006.02.013.
G.P. Purja Pun, K.A. Darling, L.J. Kecskes, Y. Mishin, Acta Mater. 100 (2015) 377–391. http://doi.org/10.1016/j.actamat.2015.08.052
K.A. Darling, E.L. Huskins, B.E. Schuster, Q. Wei, L.J. Kecskes, Mater. Sci. Eng. A 638 (2015) 322–328. http://doi.org/10.1016/j.msea.2015.04.069
Z. Liu, W. Zhou, Y. Lu, H. Xu, Z. Qin, X. Lu, Mater. Lett. 225 (2018) 85–88. http://doi.org/10.1016/j.matlet.2018.04.114
Q. Zhou, P. Chen, J. Alloys Compd. 657 (2016) 215–223. http://doi.org/10.1016/j.jallcom.2015.10.057
C. Jigui, W. Lei, C. Yanbo, Z. Jinchuan, S. Peng, D. Jie, J. Mater. Process. Technol. 210 (2010) 137–142. http://doi.org/10.1016/j.jmatprotec.2009.08.001
J. Li, N. Deng, P. Wu, Z. Zhou, J. Alloys Compd. 770 (2019) 405–410. http://doi.org/10.1016/j.jallcom.2018.08.158
Y. Li, J. Zhang, G. Luo, Q. Shen, L. Zhang, Int. J. Refract. Metals Hard Mater. 71 (2018) 255–261. http://doi.org/10.1016/j.ijrmhm.2017.11.042
H.G. Paris, B.G. LeFevre, Mater. Res. Bull. 7 (1972) 1109–1116. http://doi.org/10.1016/0025-5408(72)90163-8
G.D. Barrera, de R.H. Tendler, E.P. Isoardi, Model. Simul. Mater. Sci. Eng. 8 (2000) 389–401. http://doi.org/10.1088/0965-0393/8/3/317
A.Y. Volkov, Gold Bull. 37 (2004) 208–215. http://doi.org/10.1007/BF03215214
A. Rohatgi, K.S. Vecchio, G.T. Gray, Acta Mater. 49 (2001) 427–438. http://doi.org/10.1016/S1359-6454(00)00335-9
P.C.J. Gallagher, Metall. Trans. I (1970) 2429–2461. http://doi.org/10.1007/BF03038370
W.Z. Han, Z.F. Zhang, S.D. Wu, S.X. Li, Philos. Mag. 88 (2008) 3011–3029. http://doi.org/10.1080/14786430802438168
T. V Nordstrom, C.R. Barrett, Acta Metall. 17 (1969) 139–146. http://doi.org/10.1016/0001-6160(69)90134-5
W. Ratuszek, A. Bunsh, K. Chrusciel, Mater. Sci. Forum 157–162 (1994) 1045–1050. http://doi.org/10.4028/www.scientific.net/MSF.157-162.1045
S.N. Dey, P. Chatterjee, S.P. Sen Gupta, J. Appl. Phys. 100 (2006) 073509. http://doi.org/10.1063/1.2356906
X.L. Ma, W.Z. Xu, H. Zhou, J.A. Moering, J. Narayan, Y.T. Zhu, Philos. Mag. 95 (2015) 301–310. http://doi.org/10.1080/14786435.2014.1000418
Y.H. Zhao, X.Z. Liao, Y.T. Zhu, Z. Horita, T.G. Langdon, Mater. Sci. Eng. A 410–411 (2005) 188–193. http://doi.org/10.1016/j.msea.2005.08.074
S.K. Chatterjee, S.K. Halder, S.P. Sen Gupta, J. Appl. Phys. 48 (1977) 1442–1448. http://doi.org/10.1063/1.323858
S. Fujita, T. Uesugi, Y. Takigawa, K. Higashi, Mater. Sci. Forum 561–565 (2007) 1915–1918. http://doi.org/10.4028/www.scientific.net/MSF.561-565.1915
H.P. Rave, E. Hornbogen, Z. Met. 55 (1964) 763.
A. Vinogradov, D.L. Merson, V. Patlan, S. Hashimoto, Mater. Sci. Eng. A 341 (2003) 57–73. http://doi.org/10.1016/S0921-5093(02)00214-9
S.K. Ghosh, S.P. Sen Gupta, J. Appl. Phys. 54 (1983) 6652. http://doi.org/10.1063/1.331851
S.N. Dey, P. Chatterjee, S.P. Sen Gupta, Acta Mater. 53 (2005) 4635–4642. http://doi.org/10.1016/j.actamat.2005.06.017
N.M. Heckman, L. Velasco, A.M. Hodge, MRS Commun. 1 (2017) 6–11. http://doi.org/10.1557/mrc.2017.32
Y.Z. Tian, L.J. Zhao, S. Chen, A. Shibata, Z.F. Zhang, N. Tsuji, Nat. Sci. Reports 5 (2015) 16707. http://doi.org/10.1038/srep16707
L. Velasco, M.N. Polyakov, A.M. Hodge, Scr. Mater. 83 (2014) 33–36. http://doi.org/10.1016/j.scriptamat.2014.04.002
M. Makhlouf, T. Bachaga, J. Sunol, M. Dammak, M. Khitouni, Metals (Basel). 6 (2016) 145. http://doi.org/10.3390/met6070145, http://www.mdpi.com/2075-4701/6/7/145
X.H. An, S.D. Wu, Z.F. Zhang, R.B. Figueiredo, N. Gao, T.G. Langdon, Scr. Mater. 66 (2012) 227–230. http://doi.org/10.1016/j.scriptamat.2011.10.043
C.X. Huang, W. Hu, G. Yang, Z.F. Zhang, S.D. Wu, Q.Y. Wang, G. Gottstein, Mater. Sci. Eng. A 556 (2012) 638–647. http://doi.org/10.1016/j.msea.2012.07.041
C.S. Barrett, J. Met. 188 (1950) 123–135. http://doi.org/10.1007/BF03398986
B.G. Mendis, I.P. Jones, R.E. Smallman, J. Electron Microsc. (Tokyo). 53 (2004) 311–323. http://doi.org/10.1093/jmicro/dfh045
H. Saka, Philos. Mag. A 47 (1983) 131–140. http://doi.org/10.1080/01418618308243113
K. Sufryd, N. Ponweiser, P. Riani, K.W. Richter, G. Cacciamani, Intermetallics 19 (2011) 1479–1488. http://doi.org/10.1016/j.intermet.2011.05.017
R.H. Jo, T.J. Kim, S.H. Hong, Y.S. Kim, H.J. Park, W.J. Park, J.M. Park, B.K. Kim, J. Alloys Compd. 707 (2017) 184–188. http://doi.org/10.1016/j.jallcom.2016.12.352
G.H. Xiao, N.R. Tao, K. Lu, Scr. Mater. 59 (2008) 975–978. http://doi.org/10.1016/j.scriptamat.2008.06.060
K. Youssef, M. Sakaliyska, H. Bahmanpour, R. Scattergood, C. Koch, Acta Mater. 59 (2011) 5758–5764. http://doi.org/10.1016/j.actamat.2011.05.052
K.H.G. Ashbee, L.F. Vassamillet, Acta Metall. 15 (1967) 481–484. http://doi.org/10.1016/0001-6160(67)90079-X
Y.L. Gong, C.E. Wen, Y.C. Li, X.X. Wu, L.P. Cheng, X.C. Han, X.K. Zhu, Mater. Sci. Eng. A 569 (2013) 144–149. http://doi.org/10.1016/j.msea.2013.01.022
L. Delehouzee, A. Deruyttere, Acta Metall. 15 (1967) 727–734. http://doi.org/10.1016/0001-6160(67)90353-7
R. Juškenas, Z. Mockus, S. Kanapeckaite, G. Stalnionis, A. Survila, Electrochim. Acta 52 (2006) 928–935. http://doi.org/10.1016/j.electacta.2006.06.029
X. Sang, K. Du, H. Ye, J. Alloys Compd. 469 (2009) 129–136. http://doi.org/10.1016/j.jallcom.2008.01.107, http://linkinghub.elsevier.com/retrieve/pii/S0925838808001758
Y. Zhang, D.W. Yuan, J.H. Chen, G. Zeng, T.W. Fan, Z.R. Liu, C.L. Wu, L.H. Liu, J. Electron. Mater. 45 (2016) 4018–4027. http://doi.org/10.1007/s11664-016-4605-3
Y. Cao, S. Ni, X. Liao, M. Song, Y. Zhu, Mater. Sci. Eng. R 133 (2018) 1–59. http://doi.org/10.1016/j.mser.2018.06.001
Authors retain copyright of the published papers and grant to the publisher the non-exclusive right to publish the article, to be cited as its original publisher in case of reuse, and to distribute it in all forms and media.
The Author(s) warrant that their manuscript is their original work that has not been published before; that it is not under consideration for publication elsewhere; and that its publication has been approved by all co-authors, if any, as well as tacitly or explicitly by the responsible authorities at the institution where the work was carried out. The Author(s) affirm that the article contains no unfounded or unlawful statements and does not violate the rights of others. The author(s) also affirm that they hold no conflict of interest that may affect the integrity of the Manuscript and the validity of the findings presented in it. The Corresponding author, as the signing author, warrants that he/she has full power to make this grant on behalf of the Author(s). Any software contained in the Supplemental Materials is free from viruses, contaminants or worms.The published articles will be distributed under the Creative Commons Attribution ShareAlike 4.0 International license (CC BY-SA).
Authors are permitted to deposit publisher's version (PDF) of their work in an institutional repository, subject-based repository, author's personal website (including social networking sites, such as ResearchGate, Academia.edu, etc.), and/or departmental website at any time after publication.
Upon receiving the proofs, the Author(s) agree to promptly check the proofs carefully, correct any typographical errors, and authorize the publication of the corrected proofs.
The Corresponding author agrees to inform his/her co-authors, of any of the above terms.