Generalised stacking fault energies of copper alloys – density functional theory calculations

  • Marek Muzyk Faculty of Mathematics and Natural Sciences. School of Exact Sciences, Cardinal Stefan Wyszynski University in Warsaw, Woycickiego 1/3 building 12, 01-938 Warsaw
  • Krzysztof Jan Kurzydłowski 2Faculty of Mechanical Engineering, Bialystok University of Technology, Wiejska 54C, 15-351 Białystok

Abstract


Generalised stacking fault energies of copper alloys have been calculated using density functional theory. Stacking fault energy of copper alloys is correlated with the d-electrons number of transition metal alloying element. The tendency to twining is also modified by the presence of alloying element in the deformation plane. The results suggest that Cu –transition metal alloys with such elements as Cr, Mo, W, Mn, Re are expected to exhibit great work hardening rate due to the tendency to emission of the partial dislocations.

References

B.B. Zhang, N.R. Tao, K. Lu, Scr. Mater. 129 (2017) 39–43. http://doi.org/10.1016/j.scriptamat.2016.10.022

Y. Sakai, H.J. Schneider-Muntau, Acta Mater. 45 (1997) 1017–1023. http://doi.org/10.1016/S1359-6454(96)00248-0

Y. Sakai, T. Hibaru, K. Miura, A. Matsuo, K. Kawaguchi, K. Kindo, MRS Adv. 1 (2016) 1137–1148. http://doi.org/10.1557/adv.2015.4

A. Kauffmann, D. Geissler, J. Freudenberger, Mater. Sci. Eng. A 651 (2016) 567–573. http://doi.org/10.1016/j.msea.2015.10.119

C. Zhu, A. Ma, J. Jiang, X. Li, D. Song, D. Yang, Y. Yuan, J. Chen, J. Alloys Compd. 582 (2014) 135–140. http://doi.org/10.1016/j.jallcom.2013.08.007

S.F. Abbas, S. Seo, K.-T. Park, B. Kim, T. Kim, J. Alloys Compd. 720 (2017) 8–16. http://doi.org/10.1016/j.jallcom.2017.05.244

K.M. Youssef, M.A. Abaza, R.O. Scattergood, C.C. Koch, Mater. Sci. Eng. A 711 (2018) 350–355. http://doi.org/10.1016/j.msea.2017.11.060

J. Han, J. Sun, Y. Han, H. Zhu, L. Fang, Metals (Basel). 8 (2018) 344. http://doi.org/10.3390/met8050344, http://www.mdpi.com/2075-4701/8/5/344

A. Hosseinzadeh Delandar, R. Sandström, P. Korzhavyi, Metals (Basel). 8 (2018) 772. http://doi.org/10.3390/met8100772, http://www.mdpi.com/2075-4701/8/10/772

Q. Lei, Z. Li, M.P. Wang, L. Zhang, Z. Xiao, Y.L. Jia, Mater. Sci. Eng. A 527 (2010) 6728–6733. http://doi.org/10.1016/j.msea.2010.07.023

L. Lu, X. Chen, X. Huang, K. Lu, Science (80-. ). 323 (2009) 607–610. http://doi.org/10.1126/science.1167641, http://www.sciencemag.org/cgi/doi/10.1126/science.1167641

J. Sun, C. Li, J. Han, X. Shao, X. Yang, H. Liu, D. Song, A. Ma, Metals (Basel). 7 (2017) 438. http://doi.org/10.3390/met7100438, http://www.mdpi.com/2075-4701/7/10/438

C.Z. Xu, Q.J. Wang, M.S. Zheng, J.W. Zhu, J.D. Li, M.Q. Huang, Q.M. Jia, Z.Z. Du, Mater. Sci. Eng. A 459 (2007) 303–308. http://doi.org/10.1016/j.msea.2007.01.105

L. Lu, Y. Shen, X. Chen, L. Qian, K. Lu, Science (80-. ). 304 (2004) 422–426. http://doi.org/10.1126/science.1092905, http://www.sciencemag.org/cgi/doi/10.1126/science.1092905

Y. Zhang, N.R. Tao, K. Lu, Scr. Mater. 60 (2009) 211-213. http://doi.org/10.1016/j.scriptamat.2008.10.005

H. Xu, I. Qin, H. Clauberg, B. Chylak, V.L. Acoff, Scr. Mater. 115 (2016) 1–5. http://doi.org/10.1016/j.scriptamat.2015.12.025

C.W. Schmidt, P. Knödler, H.W. Höppel, M. Göken, Metals (Basel). 1 (2011) 65–78. http://doi.org/10.3390/met1010065, http://www.mdpi.com/2075-4701/1/1/65

Y.Z. Tian, S.D. Wu, Z.F. Zhang, R.B. Figueiredo, N. Gao, T.G. Langdon, Scr. Mater. 65 (2011) 477–480. http://doi.org/10.1016/j.scriptamat.2011.06.004.

R.K. Islamgaliev, K.M. Nesterov, J. Bourgon, Y. Champion, R.Z. Valiev, J. Appl. Phys. 115 (2014) 1–5. http://doi.org/10.1063/1.4874655.

X. Chen, F. Jiang, J. Jiang, P. Xu, M. Tong, Z. Tang, Metals (Basel). 8 (2018) 227. http://doi.org/10.3390/met8040227, http://www.mdpi.com/2075-4701/8/4/227

M.A. Bhatia, M. Rajagopalan, K.A. Darling, M.A. Tschopp, K.N. Solanki, Mater. Res. Lett. 5 (2017) 48–54. http://doi.org/10.1080/21663831.2016.1201160

L.I. Zaynullina, I. V Alexandrov, W. Wei, Defect Diffus. Forum 385 (2018) 195–199. http://doi.org/10.4028/www.scientific.net/DDF.385.195

R. Li, S. Zhang, H. Kang, Z. Chen, F. Yang, W. Wang, C. Zou, T. Li, T. Wang, J. Alloys Compd. 693 (2017) 592–600. http://doi.org/10.1016/j.jallcom.2016.09.209

E.B. Tadmor, N. Bernstein, J. Mech. Phys. Solids 52 (2004) 2507–2519. http://doi.org/10.1016/j.jmps.2004.05.002

M. Muzyk, Z. Pakiela, K.J. Kurzydlowski, Scr. Mater. 64 (2011) 916–918. http://doi.org/10.1016/j.scriptamat.2011.01.034

M. Muzyk, Z. Pakiela, K.J. Kurzydlowski, Scr. Mater. 66 (2012) 219–222. http://doi.org/10.1016/j.scriptamat.2011.10.038

D.J. Siegel, Appl. Phys. Lett. 87 (2005) 121901–3. http://doi.org/10.1063/1.2051793

P. Kwasniak, M. Muzyk, H. Garbacz, K.J. Kurzydlowski, Mater. Chem. Phys. 154 (2015) 137–143. http://doi.org/10.1016/j.matchemphys.2015.01.056

P. Kwasniak, M. Muzyk, H. Garbacz, K.J. Kurzydlowski, Mater. Lett. 94 (2013) 92–94. http://doi.org/10.1016/j.matlet.2012.12.002

P. Kwasniak, M. Muzyk, H. Garbacz, K.J. Kurzydlowski, Mater. Sci. Eng. A 590 (2014) 74–79. http://doi.org/10.1016/j.msea.2013.10.004

M. Muzyk, Z. Pakieła, K.J. Kurzydłowski, Metals (Basel). 8 (2018) 823. http://doi.org/10.3390/met8100823, www.mdpi.com/journal/metals.

W. Li, S. Lu, Q.-M.M. Hu, S.K. Kwon, B. Johansson, L. Vitos, J. Phys. Condens. Matter 26 (2014) 265005. http://doi.org/10.1088/0953-8984/26/26/265005

Q.Q. Shao, L.H. Liu, T.W. Fan, D.W. Yuan, J.H. Chen, J. Alloys Compd. 726 (2017) 601–607. http://doi.org/10.1016/j.jallcom.2017.07.332

G.H. Xiao, N.R. Tao, K. Lu, Scr. Mater. 65 (2011) 119–122. http://doi.org/10.1016/j.scriptamat.2011.03.005.

J.C. Pang, Q.Q. Duan, S.D. Wu, S.X. Li, Z.F. Zhang, Scr. Mater. 63 (2010) 1085–1088. http://doi.org/10.1016/j.scriptamat.2010.08.009.

A. Shadkam, Scr. Mater. 135 (2017) 68–71. http://doi.org/10.1016/j.scriptamat.2017.03.024

L. Song, Y. Yuan, Z. Yin, Int. J. Nonferrous Metall. 2 (2013) 100–105. http://doi.org/10.4236/ijnm.2013.23014.

G. Kresse, J. Furthmüller, Comput. Mater. Sci. 6 (1996) 15–50. http://doi.org/10.1016/0927-0256(96)00008-0

G. Kresse, J. Furthmüller, Phys. Rev. B - Condens. Matter Mater. Phys. 54 (1996) 11169–11186. http://doi.org/10.1103/PhysRevB.54.11169

P.E. Blöchl, Phys. Rev. B 50 (1994) 17953–17979. http://doi.org/10.1103/PhysRevB.50.17953

J.P. Perdew, K. Burke, M. Ernzerhof, Phys. Rev. Lett. 77 (1996) 3865–3868. http://doi.org/10.1103/PhysRevLett.77.3865

D. Joubert, Phys. Rev. B - Condens. Matter Mater. Phys. 59 (1999) 1758–1775. http://doi.org/10.1103/PhysRevB.59.1758

C. Brandl, P.M. Derlet, H. Van Swygenhoven, Phys. Rev. B - Condens. Matter Mater. Phys. 76 (2007) 1–8. http://doi.org/10.1103/PhysRevB.76.054124

S. Ogata, J. Li, S. Yip, Science (80-. ). 298 (2002) 807–811. http://doi.org/10.1126/science.1076652

X.Z. Wu, R. Wang, S.F. Wang, Q.Y. Wei, Appl. Surf. Sci. 256 (2010) 6345–6349. http://doi.org/10.1016/j.apsusc.2010.04.014

S. Kibey, J.B. Liu, D.D. Johnson, H. Sehitoglu, Appl. Phys. Lett. 89 (2006) 191911. http://doi.org/10.1063/1.2387133

S. Ogata, J. Li, S. Yip, Phys. Rev. B 71 (2005) 224102. http://doi.org/10.1103/PhysRevB.71.224102

J.P. Hirth, J. Lothe, Theory of Dislocations, 2nd ed., Wiley, New York, 1982, p. 182.

C.B. Carter, I.L.F. Ray, Philos. Mag. 35 (1977) 189–200. http://doi.org/10.1080/14786437708235982

J.M. Howe, Interfaces in Materials, Wiley, New York, 1997, p. 202.

S. Shao, J. Wang, Metals (Basel). 5 (2015) 1887–1901. http://doi.org/10.3390/met5041887

H. Wei, Y. Cui, H. Cui, C. Zhou, L. Hou, Y. hui Wei, J. Alloys Compd. 763 (2018) 835–843. http://doi.org/10.1016/j.jallcom.2018.06.043

Z.Y. Wang, D. Han, X.W. Li, Mater. Sci. Eng. A 679 (2017) 484–492. http://doi.org/10.1016/j.msea.2016.10.064

I.R. Harris, I.L. Dillamore, R.E. Smallman, B.E.P. Beeston, Philos. Mag. 14 (1966) 325–333. http://doi.org/10.1080/14786436608219015

S. Nagarjuna, M. Srinivas, K. Balasubramanian, D.S. Sarma, Mater. Sci. Eng. A 259 (1999) 34–42. http://doi.org/10.1016/S0921-5093(98)00882-X

J. Stasic, D. Bozic, J. Alloys Compd. 762 (2018) 231–236. http://doi.org/10.1016/j.jallcom.2018.05.135

S. Wei, L. Zhang, S. Zheng, X. Wang, J. Wang, Scr. Mater. 159 (2019) 104–108. http://doi.org/10.1016/j.scriptamat.2018.09.031

Q. Guo, G.B. Thompson, Acta Mater. 148 (2018) 63–71. http://doi.org/10.1016/j.actamat.2018.01.023

A. Korneva, B. Straumal, A. Kilmametov, R. Chulist, P. Straumal, P. Zieba, Mater. Charact. 114 (2016) 151–156. http://doi.org/10.1016/j.matchar.2016.02.017

W. He, E. Wang, L. Hu, Y. Yu, H. Sun, J. Mater. Process. Technol. 208 (2008) 205–210. http://doi.org/10.1016/j.jmatprotec.2007.12.107

Q.J. Wang, Z.Z. Du, L. Luo, W. Wang, J. Alloys Compd. 526 (2012) 39–44. http://doi.org/10.1016/j.jallcom.2012.02.102

K.X. Wei, W. Wei, F. Wang, Q.B. Du, I. V Alexandrov, J. Hu, Mater. Sci. Eng. A 528 (2011) 1478–1484. http://doi.org/10.1016/j.msea.2010.10.059

J. Guo, J. Rosalie, R. Pippan, Z. Zhang, Scr. Mater. 133 (2017) 41–44. http://doi.org/10.1016/j.scriptamat.2017.02.009

A. Nortmann, C. Schwink, Acta Mater. 45 (1997) 2051–2058. http://doi.org/10.1016/S1359-6454(96)00293-5.

X.X. Wu, X.Y. San, X.G. Liang, Y.L. Gong, X.K. Zhu, Mater. Des. 47 (2013) 372–376. http://doi.org/10.1016/j.matdes.2012.12.006.

O. Engler, Acta Mater. 48 (2000) 4827–4840. http://doi.org/10.1016/S1359-6454(00)00272-X.

J. Eckert, J.C. Holzer, C.E.K. Iii, W.L. Johnson, J. Appl. Phys. 73 (1993) 2794–2802. http://doi.org/10.1063/1.353055.

A. Bachmaier, M. Kerber, D. Setman, R. Pippan, Acta Mater. 60 (2012) 860–871. http://doi.org/10.1016/j.actamat.2011.10.044

M. Mojtahedi, M. Goodarzi, M.R. Aboutalebi, M. Ghaffari, V. Soleimanian, J. Alloys Compd. 550 (2013) 380–388. http://doi.org/10.1016/j.jallcom.2012.10.112

N. Wanderka, U. Czubayko, V. Naundorf, V.A. Ivchenko, A.Y. Yermakov, M.A. Uimin, H. Wollenberger, Ultramicroscopy 89 (2001) 189–194. http://doi.org/10.1016/S0304-3991(01)00104-8

L. Fu, J. Yang, Q. Bi, W. Liu, Philos. Mag. Lett. 91 (2011) 78–85. http://doi.org/10.1080/09500839.2010.533132

Y. Zhang, J. Guo, J. Chen, C. Wu, K.S. Kormout, P. Ghosh, Z. Zhang, J. Alloys Compd. (2018). http://doi.org/10.1016/j.jallcom.2018.10.275, https://linkinghub.elsevier.com/retrieve/pii/S0925838818339501

A. Bachmaier, G.B. Rathmayr, J. Schmauch, N. Schell, A. Stark, N. Jonge, R. Pippan, J. Mater. Res. 1 (2018) 1–11. http://doi.org/10.1557/jmr.2018.185

S. Lu, Q. Hu, E.K. Delczeg-Czirjak, B. Johansson, L. Vitos, Acta Mater. 60 (2012) 4506–4513. http://doi.org/10.1016/j.actamat.2012.04.024

S. Koda, J. Phys. Soc. Japan 19 (1964) 2356–2357. http://doi.org/10.1143/JPSJ.19.2356

X. Liu, R. Hao, S. Mao, S.J. Dillon, Scr. Mater. 130 (2017) 178–181. http://doi.org/10.1016/j.scriptamat.2016.11.038

S.W. Lee, M.Y. Huh, E. Fleury, J.C. Lee, Acta Mater. 54 (2006) 349–355. http://doi.org/10.1016/j.actamat.2005.09.007

N. Mattern, P. Jóvári, I. Kaban, S. Gruner, A. Elsner, V. Kokotin, H. Franz, B. Beuneu, J. Eckert, J. Alloys Compd. 485 (2009) 163–169. http://doi.org/10.1016/j.jallcom.2009.05.111

D. Wang, Y. Li, B.B. Sun, M.L. Sui, K. Lu, E. Ma, 2Applied Phys. Lett. 84 (2004) 4029–4031. http://doi.org/10.1016/S1359-6462(02)00055-6

Y.Q. Wang, J.Y. Zhang, X.Q. Liang, K. Wu, G. Liu, J. Sun, Acta Mater. 95 (2015) 132–144. http://doi.org/10.1016/j.actamat.2015.05.007

M. Kapoor, T. Kaub, K.A. Darling, B.L. Boyce, G.B. Thompson, Acta Mater. 126 (2017) 564–575. http://doi.org/10.1016/j.actamat.2016.12.057

R. Lei, M. Wang, S. Xu, H. Wang, G. Chen, Metals (Basel). 6 (2016) 194. http://doi.org/10.3390/met6090194, http://www.mdpi.com/2075-4701/6/9/194

J.Y. Zhang, J.T. Zhao, X.G. Li, Y.Q. Wang, K. Wu, G. Liu, J. Sun, Acta Mater. 143 (2018) 55–66. http://doi.org/10.1016/j.actamat.2017.09.039.

J. Cornejo, V. Martínez, S. Ordoñez, Key Eng. Mater. 189–191 (2001) 561–566. http://doi.org/10.4028/www.scientific.net/KEM.189-191.561, http://www.scientific.net/KEM.189-191.561

X. He, X.Y. Li, B.X. Liu, J. Phys. Soc. Japan 72 (2003) 3032–3034. http://doi.org/10.1143/JPSJ.72.3032.

S.A. Martynova, E.Y. Filatov, S. V Korenev, N. V Kuratieva, L.A. Sheludyakova, P.E. Plusnin, Y. V Shubin, E.M. Slavinskaya, A.I. Boronin, J. Solid State Chem. 212 (2014) 42–47. http://doi.org/10.1016/j.jssc.2014.01.008

S. Porobova, T. Markova, V. Klopotov, A. Klopotov, O. Loskutov, V. Vlasov, AIP Conf. Proc. 1698 (2016) 2–9. http://doi.org/10.1063/1.4937827

Y.Z. Tian, Z.F. Zhang, Scr. Mater. 66 (2012) 65–68. http://doi.org/10.1016/j.scriptamat.2011.09.024

I.H. Lee, S.I. Hong, K.H. Lee, J. Korean Inst. Met. Mater. 50 (2012) 931–937. http://doi.org/10.3365/KJMM.2012.50.12.931

K.S. Kormout, B. Yang, R. Pippan, Adv. Eng. Mater. 17 (2015) 1828–1834. http://doi.org/10.1002/adem.201500109

Y.Z. Tian, J.J. Li, P. Zhang, S.D. Wu, Z.F. Zhang, M. Kawasaki, T.G. Langdon, Acta Mater. 60 (2012) 269–281. http://doi.org/10.1016/j.actamat.2011.09.058

Y. Sakai, K. Inoue, H. Maeda, Acta Metall. Mater. 43 (1995) 1517–1522. https://doi.org/10.1016/0956-7151(94)00376-S

Y. Zhong, A. Saengdeejing, L. Kecskes, B. Klotz, Z. Liu, Acta Mater. 61 (2013) 660–669. http://doi.org/10.1016/j.actamat.2012.10.014

D. Liang, Y. Liu, J. Alloys Compd. 426 (2006) 101–105. http://doi.org/10.1016/j.jallcom.2006.02.013.

G.P. Purja Pun, K.A. Darling, L.J. Kecskes, Y. Mishin, Acta Mater. 100 (2015) 377–391. http://doi.org/10.1016/j.actamat.2015.08.052

K.A. Darling, E.L. Huskins, B.E. Schuster, Q. Wei, L.J. Kecskes, Mater. Sci. Eng. A 638 (2015) 322–328. http://doi.org/10.1016/j.msea.2015.04.069

Z. Liu, W. Zhou, Y. Lu, H. Xu, Z. Qin, X. Lu, Mater. Lett. 225 (2018) 85–88. http://doi.org/10.1016/j.matlet.2018.04.114

Q. Zhou, P. Chen, J. Alloys Compd. 657 (2016) 215–223. http://doi.org/10.1016/j.jallcom.2015.10.057

C. Jigui, W. Lei, C. Yanbo, Z. Jinchuan, S. Peng, D. Jie, J. Mater. Process. Technol. 210 (2010) 137–142. http://doi.org/10.1016/j.jmatprotec.2009.08.001

J. Li, N. Deng, P. Wu, Z. Zhou, J. Alloys Compd. 770 (2019) 405–410. http://doi.org/10.1016/j.jallcom.2018.08.158

Y. Li, J. Zhang, G. Luo, Q. Shen, L. Zhang, Int. J. Refract. Metals Hard Mater. 71 (2018) 255–261. http://doi.org/10.1016/j.ijrmhm.2017.11.042

H.G. Paris, B.G. LeFevre, Mater. Res. Bull. 7 (1972) 1109–1116. http://doi.org/10.1016/0025-5408(72)90163-8

G.D. Barrera, de R.H. Tendler, E.P. Isoardi, Model. Simul. Mater. Sci. Eng. 8 (2000) 389–401. http://doi.org/10.1088/0965-0393/8/3/317

A.Y. Volkov, Gold Bull. 37 (2004) 208–215. http://doi.org/10.1007/BF03215214

A. Rohatgi, K.S. Vecchio, G.T. Gray, Acta Mater. 49 (2001) 427–438. http://doi.org/10.1016/S1359-6454(00)00335-9

P.C.J. Gallagher, Metall. Trans. I (1970) 2429–2461. http://doi.org/10.1007/BF03038370

W.Z. Han, Z.F. Zhang, S.D. Wu, S.X. Li, Philos. Mag. 88 (2008) 3011–3029. http://doi.org/10.1080/14786430802438168

T. V Nordstrom, C.R. Barrett, Acta Metall. 17 (1969) 139–146. http://doi.org/10.1016/0001-6160(69)90134-5

W. Ratuszek, A. Bunsh, K. Chrusciel, Mater. Sci. Forum 157–162 (1994) 1045–1050. http://doi.org/10.4028/www.scientific.net/MSF.157-162.1045

S.N. Dey, P. Chatterjee, S.P. Sen Gupta, J. Appl. Phys. 100 (2006) 073509. http://doi.org/10.1063/1.2356906

X.L. Ma, W.Z. Xu, H. Zhou, J.A. Moering, J. Narayan, Y.T. Zhu, Philos. Mag. 95 (2015) 301–310. http://doi.org/10.1080/14786435.2014.1000418

Y.H. Zhao, X.Z. Liao, Y.T. Zhu, Z. Horita, T.G. Langdon, Mater. Sci. Eng. A 410–411 (2005) 188–193. http://doi.org/10.1016/j.msea.2005.08.074

S.K. Chatterjee, S.K. Halder, S.P. Sen Gupta, J. Appl. Phys. 48 (1977) 1442–1448. http://doi.org/10.1063/1.323858

S. Fujita, T. Uesugi, Y. Takigawa, K. Higashi, Mater. Sci. Forum 561–565 (2007) 1915–1918. http://doi.org/10.4028/www.scientific.net/MSF.561-565.1915

H.P. Rave, E. Hornbogen, Z. Met. 55 (1964) 763.

A. Vinogradov, D.L. Merson, V. Patlan, S. Hashimoto, Mater. Sci. Eng. A 341 (2003) 57–73. http://doi.org/10.1016/S0921-5093(02)00214-9

S.K. Ghosh, S.P. Sen Gupta, J. Appl. Phys. 54 (1983) 6652. http://doi.org/10.1063/1.331851

S.N. Dey, P. Chatterjee, S.P. Sen Gupta, Acta Mater. 53 (2005) 4635–4642. http://doi.org/10.1016/j.actamat.2005.06.017

N.M. Heckman, L. Velasco, A.M. Hodge, MRS Commun. 1 (2017) 6–11. http://doi.org/10.1557/mrc.2017.32

Y.Z. Tian, L.J. Zhao, S. Chen, A. Shibata, Z.F. Zhang, N. Tsuji, Nat. Sci. Reports 5 (2015) 16707. http://doi.org/10.1038/srep16707

L. Velasco, M.N. Polyakov, A.M. Hodge, Scr. Mater. 83 (2014) 33–36. http://doi.org/10.1016/j.scriptamat.2014.04.002

M. Makhlouf, T. Bachaga, J. Sunol, M. Dammak, M. Khitouni, Metals (Basel). 6 (2016) 145. http://doi.org/10.3390/met6070145, http://www.mdpi.com/2075-4701/6/7/145

X.H. An, S.D. Wu, Z.F. Zhang, R.B. Figueiredo, N. Gao, T.G. Langdon, Scr. Mater. 66 (2012) 227–230. http://doi.org/10.1016/j.scriptamat.2011.10.043

C.X. Huang, W. Hu, G. Yang, Z.F. Zhang, S.D. Wu, Q.Y. Wang, G. Gottstein, Mater. Sci. Eng. A 556 (2012) 638–647. http://doi.org/10.1016/j.msea.2012.07.041

C.S. Barrett, J. Met. 188 (1950) 123–135. http://doi.org/10.1007/BF03398986

B.G. Mendis, I.P. Jones, R.E. Smallman, J. Electron Microsc. (Tokyo). 53 (2004) 311–323. http://doi.org/10.1093/jmicro/dfh045

H. Saka, Philos. Mag. A 47 (1983) 131–140. http://doi.org/10.1080/01418618308243113

K. Sufryd, N. Ponweiser, P. Riani, K.W. Richter, G. Cacciamani, Intermetallics 19 (2011) 1479–1488. http://doi.org/10.1016/j.intermet.2011.05.017

R.H. Jo, T.J. Kim, S.H. Hong, Y.S. Kim, H.J. Park, W.J. Park, J.M. Park, B.K. Kim, J. Alloys Compd. 707 (2017) 184–188. http://doi.org/10.1016/j.jallcom.2016.12.352

G.H. Xiao, N.R. Tao, K. Lu, Scr. Mater. 59 (2008) 975–978. http://doi.org/10.1016/j.scriptamat.2008.06.060

K. Youssef, M. Sakaliyska, H. Bahmanpour, R. Scattergood, C. Koch, Acta Mater. 59 (2011) 5758–5764. http://doi.org/10.1016/j.actamat.2011.05.052

K.H.G. Ashbee, L.F. Vassamillet, Acta Metall. 15 (1967) 481–484. http://doi.org/10.1016/0001-6160(67)90079-X

Y.L. Gong, C.E. Wen, Y.C. Li, X.X. Wu, L.P. Cheng, X.C. Han, X.K. Zhu, Mater. Sci. Eng. A 569 (2013) 144–149. http://doi.org/10.1016/j.msea.2013.01.022

L. Delehouzee, A. Deruyttere, Acta Metall. 15 (1967) 727–734. http://doi.org/10.1016/0001-6160(67)90353-7

R. Juškenas, Z. Mockus, S. Kanapeckaite, G. Stalnionis, A. Survila, Electrochim. Acta 52 (2006) 928–935. http://doi.org/10.1016/j.electacta.2006.06.029

X. Sang, K. Du, H. Ye, J. Alloys Compd. 469 (2009) 129–136. http://doi.org/10.1016/j.jallcom.2008.01.107, http://linkinghub.elsevier.com/retrieve/pii/S0925838808001758

Y. Zhang, D.W. Yuan, J.H. Chen, G. Zeng, T.W. Fan, Z.R. Liu, C.L. Wu, L.H. Liu, J. Electron. Mater. 45 (2016) 4018–4027. http://doi.org/10.1007/s11664-016-4605-3

Y. Cao, S. Ni, X. Liao, M. Song, Y. Zhu, Mater. Sci. Eng. R 133 (2018) 1–59. http://doi.org/10.1016/j.mser.2018.06.001

Published
2019/07/25
How to Cite
Muzyk, M., & Kurzydłowski, K. J. (2019). Generalised stacking fault energies of copper alloys – density functional theory calculations. Journal of Mining and Metallurgy, Section B: Metallurgy, 55(2), 272. Retrieved from https://aseestant.ceon.rs/index.php/jmm/article/view/19642
Section
Original Scientific Paper