The effect of platinum-aluminide coating features on high-temperature fatigue life of nickel-based superalloy Rene®80
Abstract
Low cycle fatigue is the most important failure mode in Aviation/Industrial engine rotary turbine parts. In this paper, the influence of Pt-aluminide coating parameters on high temperature low cycle fatigue behavior of superalloy Rene®80 which is used to manufacture turbine blades, has been investigated. For this purpose, initial platinum layers of different thicknesses (2µm and 8µm) were coated on fatigue specimens. Then the aluminizing process was performed with two conditions of low temperature-high activity and high temperature-low activity. Results of microstructure investigations performed by scanning electron microscope and X-ray diffraction phase analysis indicated a three-layer structure for the coating (bi-phase (Ni,Pt)Al+PtAl2, singel-phase (Ni,Pt)Al and interdiffusion zone) with different chemical compositions at both thicknesses of the platinum layer and using both aluminizing methods. Also Results of low cycle fatigue tests at 871 °C, R=0 and strain rate of 2×10 -3 s-1 showed a decline in fatigue properties in coated specimens as compared to uncoated sample, at total strains of 0.4, 0.8, and 1.2%. This reduction was lower in the low temperature-high activity with platinum layer thickness of 2µm, while it was more significant in the high temperature-low activity with the platinum layer thickness of 8µm. The fractography studies on coated and uncoated specimens indicated a mixed mode of ductile and brittle fracture.
Authors retain copyright of the published papers and grant to the publisher the non-exclusive right to publish the article, to be cited as its original publisher in case of reuse, and to distribute it in all forms and media.
The Author(s) warrant that their manuscript is their original work that has not been published before; that it is not under consideration for publication elsewhere; and that its publication has been approved by all co-authors, if any, as well as tacitly or explicitly by the responsible authorities at the institution where the work was carried out. The Author(s) affirm that the article contains no unfounded or unlawful statements and does not violate the rights of others. The author(s) also affirm that they hold no conflict of interest that may affect the integrity of the Manuscript and the validity of the findings presented in it. The Corresponding author, as the signing author, warrants that he/she has full power to make this grant on behalf of the Author(s). Any software contained in the Supplemental Materials is free from viruses, contaminants or worms.The published articles will be distributed under the Creative Commons Attribution ShareAlike 4.0 International license (CC BY-SA).
Authors are permitted to deposit publisher's version (PDF) of their work in an institutional repository, subject-based repository, author's personal website (including social networking sites, such as ResearchGate, Academia.edu, etc.), and/or departmental website at any time after publication.
Upon receiving the proofs, the Author(s) agree to promptly check the proofs carefully, correct any typographical errors, and authorize the publication of the corrected proofs.
The Corresponding author agrees to inform his/her co-authors, of any of the above terms.