The Effect of CaO on the Recovery of Fe and Ni in a Vacuum Carbothermal Reduction of Garnierite
Abstract
The effects of adding CaO during a vacuum carbothermal reduction on Fe and Ni recovery yields were examined. In addition, magnetic separation was investigated. Experiments were conducted under pressures ranging from 10 to 50 Pa with different proportions of CaO at different temperatures. The results indicated that at1723 K, the mass ratio of ore/C was 100:65.5; when the amount of CaO was 22.64% (the mole ratio of CaO/Si was 1:1), the recovery of Fe and Ni reached 84.33% and 97.00% in the vacuum carbothermal reduction-magnetic separation process, and the enrichment ratios of Fe and Ni were maximized, reaching 6.32 and 6.72, respectively. In addition, the recovery of Mg in the reduction process reached 99.35%. An analysis of the experimental results also indicated that the addition of CaO could cause the Fe-Si alloy to transform into the Fe-Ni alloy in the nickel-rich residue, which increased the content of Fe-Ni in the magnetic separation material from 13.34% to 73.17%. In addition, the concentration in reduced ore of Si from 45.43% increased to 83.68%, which could reduce the evaporation of Si in the form of SiO at high temperatures. If Si volatilized in the form of SiO during the condensation process, SiO would disproportionate to form Si and SiO2 contaminated condensed magnesium. In summary, the valuable metals in the minerals were comprehensively utilized with the addition of CaO.
Authors retain copyright of the published papers and grant to the publisher the non-exclusive right to publish the article, to be cited as its original publisher in case of reuse, and to distribute it in all forms and media.
The Author(s) warrant that their manuscript is their original work that has not been published before; that it is not under consideration for publication elsewhere; and that its publication has been approved by all co-authors, if any, as well as tacitly or explicitly by the responsible authorities at the institution where the work was carried out. The Author(s) affirm that the article contains no unfounded or unlawful statements and does not violate the rights of others. The author(s) also affirm that they hold no conflict of interest that may affect the integrity of the Manuscript and the validity of the findings presented in it. The Corresponding author, as the signing author, warrants that he/she has full power to make this grant on behalf of the Author(s). Any software contained in the Supplemental Materials is free from viruses, contaminants or worms.The published articles will be distributed under the Creative Commons Attribution ShareAlike 4.0 International license (CC BY-SA).
Authors are permitted to deposit publisher's version (PDF) of their work in an institutional repository, subject-based repository, author's personal website (including social networking sites, such as ResearchGate, Academia.edu, etc.), and/or departmental website at any time after publication.
Upon receiving the proofs, the Author(s) agree to promptly check the proofs carefully, correct any typographical errors, and authorize the publication of the corrected proofs.
The Corresponding author agrees to inform his/her co-authors, of any of the above terms.