Thermodynamic properties of iron, aluminum, boron and phosphorus in dilute silicon solutions by molecular interaction volume model

  • Shaoyuan Li Kunming University of Science and Technology
  • Kai Liu Kunming University of Science and Technology
  • Fan Yang Kunming University of Science and Technology
  • Fengshuo Xi Kunming University of Science and Technology
  • Jijun Wu Kunming University of Science and Technology
  • Wenhui Ma Kunming University of Science and Technology
  • Yun Lei Kunming University of Science and Technology
  • Yanjun Wang HuanOu Semiconductor Material Technology Co., LTD
  • Xuenan Zhang HuanOu Semiconductor Material Technology Co., LTD

Abstract


The thermodynamic properties of impurity components in silicon solution play an important role in chemical removal process to the metallurgical route. In this paper, the component activity coefficients and interaction parameters of dilute silicon solutions were estimated by the molecular interaction volume model (MIVM). The activity coefficients ( ) of component i in dilute binary Si-i and ternary Si-i-j solutions at 1687-1873 K were firstly calculated. The concentration dependences of interaction parameter and activity coefficient were also obtained. The self-interaction parameters ( ) for Si-i system were obtained as , , and . At the same time, the interaction parameters among components B, Al and Fe in dilute ternary Si-i-j solutions were also derived as , and . Most important of all, the temperature dependences of interaction parameters and activity coefficients in dilute Si-i and Si-i-j solutions with a certain i or j concentration were deduced. The results show that the predicted self-interaction parameters of B, Al, Fe and P in binary silicon solutions are in reasonably agreement with experimental data. This further shows that MIVM is of reliability and can be expanded to a multi-component dilute silicon solution.

References

N.S. Lewis, D.G. Nocera, Proceedings of the National Academy of Sciences. 103(2006) 15729-15735.

A. Campoccia, L. Dusonchet, E Telaretti, et al. Solar Energy. 83(2009) 287-297.

K. Morita, T. Yoshikawa, Trans. Nonferrous Met. Soc. China 21 (2011) 685-690.

J.J. Wu, Y.L. Li, W.H. Ma, K.X. Wei, B. Yang, Y.N. Dai, Trans. Nonferrous Met. Soc. China, 24 (2014) 1231-1236.

V. Osinniy, P. Bomholt, A.N. Larsen, E. Enebakk, A.K. Soiland, R. Tronstad, Y. Safir, Sol. Energy Mater. Sol. Cells 95 (2011) 564-572.

T. Miki, K. Morita, N. Sano, Metall. Mater. Trans. B 29 (1998) 1043-1049.

T. Miki, K. Morita, N. Sano, Metall. Mater. Trans. B, 28 (1997) 861-867.

J. Safarian, L. Kolbeinsen, M. Tangstad, J. Mater. Sci. 47 (2012) 5561-5580.

T. Matsumiya, Metall. Mater. Trans. B 43 (2012) 726-730.

G.M.Wilson, J. Am. Chem. Soc. 86 (2) (1964) 127-130.

C.H.P Lupis, J.F Elliott, J.Acta Mech. 15 (2) (1967) 265-276.

K. C. Chou, S. K. Wei, J. Metall. Mater. Trans. B 28 (3) (1997) 439-445.

D.P. Tao, Thermochim. Acta 363 (2000) 105-113.

D.P. Tao, Metall. Mater. Trans. B 33 (2002) 502-506.

D.P. Tao, Thermochim. Acta 385 (2002) 5-10.

D.P. Tao, Metall. Mater. Trans. A 35 (2004) 419-424.

T. Iida, R.I.L. Guthrie, The Physical Properties of Liquid Metals, Clarendon Press, Oxford, United Kingdom, 1988.

R.C. Evans, An Introduction to Crystal Chemistry, Cambridge University Press, London, 1976.

Q. Yu, J.J Wu, W.H. Ma, et al. Silicon (2016). doi:10.1007/s12633-016-9476-y

D.P. Tao, Metall. Mater. Trans. A 36 (2005) 3495-3497.

R. Hultgren, P.D. Dessi, D.T. Hawkins, M. Geiser, K.K. Kelley, Selected Values of the Thermodynamic Properties of Binary Alloys, ASM, Metals Park, OH, 1973.

D.P. Tao, Metall. Mater. Trans. B 45 (2014) 142-149.

B. Predel, Landolt-Bornstein, Group IV: Physical Chemistry, Berlin, Heidelberg, New York, 2006.

T. Yoshikawa, K. Morita, Metall. Mater. Trans. B 29 (1998) 1043-1049.

K. Liu, J.J. Wu, W.H. Ma, B. Yang, X. Yang, L.X. Kong, X.F. Zeng, Y.N. Dai, J. Min. Metall. Sect. B-Metall 50 (2014) 171-176.

K. Liu, J.J. Wu, K.X. Wei, W.H. Ma, K.Q. Xie, S.Y. Li, B. Yang, Y.N. Dai, Vacuum 114 (2015) 6-12.

C. Wagner, Thermodynamics of Alloys, Addison-Wesley, Cambridge, MA, 1952.

H. Dalaker, Comput. Methods Mater. Sci. 13 (2013) 407-411.

J. X. Chen, Handbook of Common Diagrams, Tables and Data for Steelmaking, 2nd ed., Beijing, 2013.

T. Shimpo, T. Yoshikawa, K. Morita: Metall. Mater. Trans. B 35 (2004) 277-284.

Published
2020/02/19
How to Cite
Li, S., Liu, K., Yang, F., Xi, F., Wu, J., Ma, W., Lei, Y., Wang, Y., & Zhang, X. (2020). Thermodynamic properties of iron, aluminum, boron and phosphorus in dilute silicon solutions by molecular interaction volume model. Journal of Mining and Metallurgy, Section B: Metallurgy, 56(1), 69-76. Retrieved from https://aseestant.ceon.rs/index.php/jmm/article/view/20993
Section
Original Scientific Paper