Mechanism of Aluminum Carbide Formation in Aluminum Electrolysis Cells

  • Yaowu Wang Northeastern University of China
  • Yuezhong Di Northeastern University of China
  • Jianping Peng Northeastern University of China
  • Pengcheng Hao Northeastern University of China

Abstract


The formation and dissolution of aluminum carbide is considered the primary factor affecting the life of aluminum electrolysis cells. Herein, the characteristics of sodium-graphite intercalation compounds (Na-GICs) were measured and the formation mechanism of Al4C3 during the aluminum electrolysis process was experimentally studied. The Na-GIC characteristics and the products of aluminum and Na-GIC reactions were investigated by Raman spectroscopy, X-ray diffraction, X-ray photoelectron spectroscopy and scanning electron microscopy. The results showed that graphite can react with the sodium metal to form Na-GICs, which were detectable by Raman spectroscopy. Sodium inserted into the graphite layered structure acted as an intercalation agent to change the original graphite layer structure, increasing its volume and specific surface area. Further, Al4C3 was produced using sodium-graphite intercalation compounds and aluminum as materials. Thus, the presence of sodium plays an important role in the formation process of Al4C3 in aluminum electrolysis cells.

References

B. Novak, K. Tschöpe, A.P. Ratvik, T. Grande. Light metals, 2012 TMS Annual Meeting, March 11-15, 2012, Orlando, USA, 2012, p.1343-1348.

Kristin Vasshaug, Trygve Foosnæs, Geir Martin Haarberg, G.M Haarberg, Arne P Ratvik, Egil Skybakmoen. Light metals, 2009 TMS Annual Meeting, February 15-19, 2009, San Francisco, California, USA, 2009, p. 1111-1116.

Liao Xian’an, Øye, H.A. Light metals, 1998 TMS Annual Meeting, February 15-19, 1998, San Antonio, Texas, USA, 1998, p. 667-674.

W. L. Worell. Canadian Metallurgical Quarterly. 4(1)(1964) 87-95.

Feng Naixiang. Aluminium Electrolysis. Chemical Industry Press of China. 2006, p. 128.

Morten SΦrlie and Harald A.Φye. Cathodes in Aluminum Electrolysis. Springer, Berlin, 2010, P.215-217.

R. C. Dorward. Metallurgical Transactions. 4(1973) 386-388.

P. Bonadia, F. A. O. Valenzuel, L. R. Bittencourt. American Ceramic Society Bulletin. 84(2) (2005) 26-30.

A. Solheim, C. Schøning, E. Skybakmoen. Light Metals, 2010 TMS Annual Meeting, February 14-18, 2010, Seattle, Washington, USA, 2010, p. 877-882.

Hao Pengcheng. Reaction Mechanism of Dry Barrier Material of Aluminum Reduction Cell. PhD thesis. Northeastern University, Shenyang, China, 2018.

Li Jie, Fang Jing, Li Qingyu, Lai Yanqing. Journal of Central South University of Technology. 11(4)(2004)200-204.

Fang Zhao, Wu Xiaolei, Yu Juan, Li Linbo, Zhu Jun. Transactions of Nonferrous Metals Society of China. 24(4) (2014) 1220-1230.

Fang Zhao, Zhang Kai, Lv Xiaojun, Li Linbo, Zhu Jun, Li Jie. Transactions of Nonferrous Metals Society of China. 23(6) (2013)1847−1853.

Wang Yaowu, Peng Jianping, Di Yuezhong. JOM. 70(4)(2018) 1877-1883.

Christian Schøning, Tor Grande, Ole-Jacob Siljan. Light Metals. 1999 TMS Annual Meeting, Feb. 28-Mar 4, 1999, San Diego, California, USA, 1999, p.849-856.

OleJacob Siljan, Christian Schoning, Tor Grande. JOM. 54(5)(2002) 46-55.

Yasumitsu Miyata, Kohei Mizuno, Hiromichi Kataura. Journal of Nanomaterials. 2011(2011):1-7.

Masato Kakihana, Minoru Osada. Carbon Alloys. Elsevier Science. 2003, p. 285-298.

MS Dresselhaus, A Jorio, M Hofmann, Dresselhaus G, Saito R. Nano Letters. 10(3)( 2010)751-758.

Ni Zhenhua, Wang Yingying, Yu Ting, Shen Zexiang. Nano Research. (4)( 2008)273-291.

R. J. Nemanich, S. A. Solin, D Gúerard. Physical Review B Condensed Matter. 16(6)(1977)2665-2672.

Julio C. Chacón-Torres, L Wirtz, T Pichler. Physical Status Solidi. 251(12)( 2015)2337-2355.

Hiroki Moriwake, Akihide Kuwabara, Craig A. J. Fisher, Yuichi Ikuhara. Rsc Advances. 7(58)( 2017)36550-36554.

Wang Jianqi. Introduction of Electronic Energy Spectrum (XPS/XAES/UPS). National Defence Industre Press of China, 1992, p.47-57.

Zhang Yan, Zhang Zhuxia, Li Tianbao, Liu Xuguang, Xu Bingshe. Spectrochimica Acta Part A Molecular & Biomolecular Spectroscopy. 70(5)(2008) 1060-1064.

G. Illing, D. Heskett, E.W. Plummer, H. J. Freund. Surface Science. 206 (1)(1988)1-19.

S. P. Kowalczyk, L. Ley, F. R. McFeely, R. A. Pollak, D. A. Shirley. Physical Review B. 8(8)(1973) 3583-3585.

A. Barrie, F. J. Street. Journal of Electron Spectroscopy and Related Phenomena. 7(1)(1975) l-31.

A. M. Pogodaeva, A. V. Proshkinb, P. V. Russian Journal of Non-Ferrous Metals. 51(4)( 2010) 279-284.

Yu Patrakhin, A. M. Pogodaev, A. V. Proshkin, P. V. Polyakov, I. A. Yarosh, R. V. Osipov. Refractories & Industrial Ceramics. 47(3)( 2006)183-188.

A. V. Proshkin, A. M. Pogodaev, P. V. Polyakov, V. V. Pingin, I. A. Yarosh. Refractories and Industrial Ceramics. 49(2)(2008) 84-89.

Published
2020/12/30
How to Cite
Wang, Y., Di, Y., Peng, J., & Hao, P. (2020). Mechanism of Aluminum Carbide Formation in Aluminum Electrolysis Cells. Journal of Mining and Metallurgy, Section B: Metallurgy, 56(3), 321-326. Retrieved from https://aseestant.ceon.rs/index.php/jmm/article/view/21698
Section
Original Scientific Paper