Characterization of dusts from secondary copper production

  • Dusan Orac Institute of Recycling Technologies, Faculty of Materials, Metallurgy and Recycling,Technical University of Kosice
  • Martina Laubertova Institute of Recycling Technologies, Faculty of Materials, Metallurgy and Recycling,Technical University of Kosice
  • Jana Piroskova Institute of Recycling Technologies, Faculty of Materials, Metallurgy and Recycling,Technical University of Kosice
  • Dusan Klein Institute of Recycling Technologies, Faculty of Materials, Metallurgy and Recycling,Technical University of Kosice
  • Radovan Bures Institute of Materials Research, Slovak Academy of Sciences
  • Jakub Klimko Institute of Recycling Technologies, Faculty of Materials, Metallurgy and Recycling,Technical University of Kosice

Abstract


Various types of waste, including dusts, are produced in the pyrometallurgical production of copper from secondary raw materials. According to the European Waste Catalogue and Hazardous Waste List, dusts from secondary copper production are classified as hazardous waste. In secondary copper production 3.87 million tons of copper were produced worldwide in 2017. The dusts are produced in the following thermal operations: reduction of the melt in the shaft furnace (shaft furnace dust), converting (converter dust) and pyrometallurgical refining (refining dust). These dusts contain significant amounts of heavy metals (Zn, Pb and Sn) in oxidic form. The dusts are considered as secondary raw materials, and it is necessary to look for ways of extracting these heavy metals. The aim of this work was to characterize the individual types of dust and determine their quantitative and qualitative composition. The content of heavy metals in copper shaft furnace dust is (52.16% Zn, 19.33% Pb), in copper converter dust (32.40% Zn, 14.46% Pb), and in refining dust (32.99% Zn).

References

S. M. Pérez-Moreno, M. J. Gázquez, I. Ruiz-Oria, G. Ríos, J. P. Bolívar, J. Clean. Prod. 194, (2018) 383–395. doi:10.1016/j.jclepro.2018.05.090

Brown, T. J.: World mineral production.British Geological Survey. http://www.bgs.ac.uk/mineralsUK/statistics/worldStatistics.html (2017),

Secondary copper production up 6% in first quarter of 2018, https://recyclinginternational.com/magazine/summer-issue-2018/pdf-viewer/

B.W. Schipper, H. C. Lin, M. A. Meloni, K. Wansleeben, R. Heijungs, E. van der Voet, Resour. Conserv. Recycl. 132, 28–36 (2018). doi:10.1016/j.resconrec.2018.01.004

Havlik, T.: Hydrometallurgy. Woodhead Publishing Limited, Cambridge (2008), p. 536.

M. Dimitrijević, D. Urošević, S. Milić, M. Sokić, R. Marković, J. Min. Metall. Sect. B-Metall. 53 (3) B (2017) 407 – 412. DOI:10.2298/JMMB170425016D

European IPPC Bureau: Reference Document on Best Available Techniques for the Non-Ferrous Metals Industries. (2017), https://eippcb.jrc.ec.europa.eu/reference/BREF/NFM/JRC107041_NFM_Bref_2017.pdf

D. Orac, B. Hluchanova, T. Havlik, A. Miskufova, M. Petranikova, Acta Metall. Slovaca. 3, (2009) 147–153.

D. O. Okanigbe, A. P. I. Popoola, A. A. Adeleke, Procedia Manuf. 7, (2017) 121–126. doi:10.1016/j.promfg.2016.12.032

Environmental Protection Agency: European waste catalogue and hazardous waste list. (2002), http://www.nwcpo.ie/forms/EWC_code_book.pdf

F. Habashi: Extractive Metallurgy of Copper, Métallurgie Extractive Québec, Canada (2012), p. 410.

F. Habashi, J. Min. Metall., 43 B (2007) 1 – 19.

M. Skrobian, V. Lukac, V. Mitrik, T. Balogh, Acta Metall. Slovaca. 10, (2004) 280–288.

M. Laubertova, J. Piroskova, S. Dociova, World Metall. Erzmetall. 70, (2017) 47–54.

Published
2020/09/15
How to Cite
Orac, D., Laubertova, M., Piroskova, J., Klein, D., Bures, R., & Klimko, J. (2020). Characterization of dusts from secondary copper production. Journal of Mining and Metallurgy, Section B: Metallurgy, 56(2), 221-228. Retrieved from https://aseestant.ceon.rs/index.php/jmm/article/view/22882
Section
Original Scientific Paper