High Efficiency Extractions of V, Cr, Ti, Fe and Mn from Vanadium Slag by Microwave Heating

  • Tan Bo University of Science and Technology Beijing
  • Wu Shun University of Science and Technology Beijing
  • Wang Lijun University of Science and Technology Beijing
  • Chou Kuo-chih University of Science and Technology Beijing

Abstract


The vanadium slag (V-slag) was generated from smelting Vanadium titanomagnetite ore, which contains various valuable elements, such as V, Ti, Cr, Fe and Mn. The traditional methods are more focused on the extractions of V and Cr by oxidation or reduction processes. In the present work, chlorination method was adopted to keep the valence state of each elements as original state to form dissolvable compounds in molten salt. In order to speed up the diffusion of elements, and reduce volatility of molten salt, microwave heating has been examined in the current paper. The results indicated that it only takes 30 min to chlorinate V-slag at 800 °C, and the chlorination ratio of V, Cr, Mn, Fe and Ti can reach to 82.67%, 75.82%, 92.96%, 91.66% and 63.14%, respectively. Compared with the results by conventional heating for 8 h such extraction rate shows great advantages. In addition, microwave heating can reduce volatilization of AlCl3 effectively by shorten the reaction time. The volatilization ratio of AlCl3 is 3.92% instead of 8.97% in conventional heating (1h). The mechanism of high efficient chlorination can be summarized as the enhancement of ions diffusion process and local high temperature enhances chemical reaction.

Author Biographies

Tan Bo, University of Science and Technology Beijing
Wu Shun, University of Science and Technology Beijing
Wang Lijun, University of Science and Technology Beijing
Chou Kuo-chih, University of Science and Technology Beijing

References

R. Moskalyk, A. Alfantazi, Minerals Engineering, 16(9) (2003) 793-805.

S.Q. Liu, Iron Steel Vanadium Titanium, 35 (2014) 55 (in Chinese).

X.S. Li, B. Xie, International Journal of Minerals, Metallurgy, and Materials, 19(7) (2012) 595-601.

H.X. Fang, H.Y. Li, B. Xie, ISIJ international, 52(11) (2012) 1958-1965.

J. Wen, T. Jiang, M. Zhou, H. Y. Gao, J. Y. Liu, X. X. Xue, International Journal of Minerals Metallurgy & Materials, 25(5) (2018) 515-526.

B. Liu, H. Du, S. N. Wang, Y. Zhang, S. L. Zheng, L. J. Li, D. H. Chen, Aiche Journal, 59(2) (2013) 541-552.

P. M. Danilov, I. E. Podynogin, I. A. Vainshtein, V. A. Zverev, D. S. Chesnokova, Metallurgist, 18(2) (1974) 108-110.

S.Y. Liu, L.J. Wang, K.C. Chou, Industrial & Engineering Chemistry Research, 55(50) (2016) 12962-12969.

A. Abbasalizadeh, S. Seetharaman, L. Teng, S. Sridhar, O. Grinder, Y. Izumi, M. Barati, Jom, 65(11) (2013) 1552-1558.

H. A. Hjuler, R. W. Berg, K. Zachariassen, N. J. Bjerrum, Journal of Chemical & Engineering Data, 30(2) (1985) 203-208.

D. A. Jones, T. Lelyveld, S. Mavrofidis, S. Kingman, N. Miles, Resources, conservation and recycling, 34(2) (2002) 75-90.

R. Amankwah, G. Ofori-Sarpong, Minerals Engineering, 24(6) (2011) 541-544.

A. de la Hoz, A. Diaz-Ortiz, A. Moreno, Chemical Society Reviews, 34(2) (2005) 164-178.

M. Al-Harahsheh, S. Kingman, Hydrometallurgy, 73(3-4) (2004) 189-203.

H. Hao, H. Liu, Y. Liu, M. Cao, S. Ouyang, Materials Research Innovations, 11(4) (2007) 185-187.

Z. Huang, X. Deng, J. Liu, C. Jiao, L. Lu, H. Zhang, S. Zhang, Journal of the Ceramic Society of Japan, 124(5) (2016) 593-596.

Z. Peng,J. Y. Hwang, International Materials Reviews, 60(1) (2015) 30-63.

B. Sahoo, S. De, B. Meikap, Fuel Processing Technology, 92(10) (2011) 1920-1928.

P. Kumar, B. Sahoo, S. De, D. Kar, S. Chakraborty, B. Meikap, Journal of industrial and engineering chemistry, 16(5) (2010) 805-812.

J. W. Walkiewicz, A. E. Clark, S. L. McGill, IEEE Transactions on industry applications, 27(2) (1991) 239-243.

G.Q. Zhang, T.A. Zhang, G. Lü, Y. Zhang, Y. Liu, W. Zhang, Jom, 68(2) (2016) 577-584.

K. E. Haque, International journal of mineral processing, 57(1) (1999) 1-24.

Y. Ishitsuka, T. Ishikawa, R. Koborinai, T. Omura, T. Katsufuji, Physical Review B, 90(22) (2014) 224411.

D. E. Clark, W. H. Sutton, Annual Review of Materials Science, 26(1) (1996) 299-331.

R. G. Reddy, Journal of Phase Equilibria & Diffusion, 32(4) (2011) 269-270.

J. Menéndez, A. Arenillas, B. Fidalgo, Y. Fernández, L. Zubizarreta, E. G. Calvo, J. M. Bermúdez, Fuel Processing Technology, 91(1) (2010) 1-8.

G.Q. Ou Yang, X.Y. Zhang, X.D. Tian, Y. Li, S. Xie, China J. Nonferrous Met, 18(4) (2008) 750.

R. M. Hazen, Physics & Chemistry of Minerals, 14(1) (1987) 13-20.

X.L. Shi, Y.H. Wang, K.H. Zhao, X.B. Lai, L.W. Zhang, Journal of Crystal Growth, 419 (2015) 102-107.

C. Liu, J.H. Peng, J. Liu, P. Guo, S.X. Wang, C.H. Liu, L.B. Zhang, Journal of hazardous materials, 358 (2018) 198-206.

Published
2021/07/12
How to Cite
BoT., ShunW., LijunW., & Kuo-chihC. (2021). High Efficiency Extractions of V, Cr, Ti, Fe and Mn from Vanadium Slag by Microwave Heating. Journal of Mining and Metallurgy, Section B: Metallurgy, 57(2), 271-277. Retrieved from https://aseestant.ceon.rs/index.php/jmm/article/view/22940
Section
Original Scientific Paper