Application of computational modeling to the kinetics of precipitation of Aluminum Nitride in Steels
Abstract
In previous works the possibilities and limitations of the application of calculations in the Al-Fe-N system to describe the precipitation of AlN in steel, both in the solid state and during the solidification were discussed and some difficulties related to the extension of these calculations to more complex steel systems, due to limitations in the thermodynamic data were also presented.
Presently, the precipitation kinetics of AlN in ferrite (BCC) and austenite (FCC) is discussed. The correct description of the precipitation of AlN in both phases is relevant to: (a) the precipitation at higher temperatures, in the austenite field, that occurs in some steels, (b) the concurrent precipitation of this nitride with the annealing treatment, when the steel is mostly ferritic, used in the processing of some types of deep drawing steels (c) the precipitation of this nitride in some silicon alloyed electric steels at relatively high temperatures, when these steels can have significant fractions of BCC and FCC in their microstructure. The precise knowledge of the precipitation-dissolution behavior of AlN in special in these two latter classes of steels is of great importance to their correct processing. In this work, a computational tool for simulating multi-particle precipitation kinetics of diffusion-controlled processes in multi-component and multi-phase alloy systems is employed in an attempt to describe these precipitation processes. The results are compared with experimental data on precipitation. The assumptions necessary for the application of the multi-particle modeling tool are discussed, agreements and discrepancies are identified and some possible reasons for these are indicated. Furthermore, the impact of the use of different sources of data on steel processing development is discussed and the need for further studies highlighted.
Authors retain copyright of the published papers and grant to the publisher the non-exclusive right to publish the article, to be cited as its original publisher in case of reuse, and to distribute it in all forms and media.
The Author(s) warrant that their manuscript is their original work that has not been published before; that it is not under consideration for publication elsewhere; and that its publication has been approved by all co-authors, if any, as well as tacitly or explicitly by the responsible authorities at the institution where the work was carried out. The Author(s) affirm that the article contains no unfounded or unlawful statements and does not violate the rights of others. The author(s) also affirm that they hold no conflict of interest that may affect the integrity of the Manuscript and the validity of the findings presented in it. The Corresponding author, as the signing author, warrants that he/she has full power to make this grant on behalf of the Author(s). Any software contained in the Supplemental Materials is free from viruses, contaminants or worms.The published articles will be distributed under the Creative Commons Attribution ShareAlike 4.0 International license (CC BY-SA).
Authors are permitted to deposit publisher's version (PDF) of their work in an institutional repository, subject-based repository, author's personal website (including social networking sites, such as ResearchGate, Academia.edu, etc.), and/or departmental website at any time after publication.
Upon receiving the proofs, the Author(s) agree to promptly check the proofs carefully, correct any typographical errors, and authorize the publication of the corrected proofs.
The Corresponding author agrees to inform his/her co-authors, of any of the above terms.