Corrosion behavior of the copperized layer prepared by double glow plasma surface alloying technology in 3.5 wt.% NaCl solution

  • Yang Zhengang Nanjing University of Aeronautics and Astronautics
  • Liang Wenping Nanjing University of Aeronautics and Astronautics
  • Jia Yanlin Central South University
  • Miao Qiang Nanjing University of Aeronautics and Astronautics
  • Ding Zheng Nanjing University of Aeronautics and Astronautics
  • Qi Yan Nanjing University of Aeronautics and Astronautics

Abstract


In this paper, the copperized layer was fabricated on the surface of Q235 steel via double glow plasma surface alloying technology to improve the marine fouling organisms attached on the surface of marine structures. The microstructure and phases composition of copperized layer were analyzed by SEM and XRD. The corrosion characteristics of substrate and copperized layer were investigated in 3.5 wt.% NaCl solution. The results indicated that the adhesion stress of copperized layer was strong due to the gradient structure of an outermost deposition layer and inner diffusion layer. The corrosion characteristics of copperized layer were different from substrate. The corrosion products of Q235 steel were mainly β-FeOOH, γ-FeOOH and α-FeOOH in the early stage of corrosion process. Then the whisker-like structure of α-FeOOH grew on the surface of γ-FeOOH, and β-FeOOH transformed into γ-FeOOH to achieve thermodynamically equilibrium. The dissolved copper ions in solution resulted in a unique difference in the formation of corrosion products, which inhibited the transition of iron hydroxide and promoted the formation of amorphous phases. The amorphous phase with few holes and cracks controlled the diffusion of oxygen, which restrained the oxidation-reduction reaction of the iron hydroxide at the bottom of the rust layer.

References

Rachid Jellali, Irène Campistron, Pamela Pasetto, Albert Laguerre, Frédéric Gohier, Claire Hellio, Jean-François Pilard, Jean-Luc Mouget. Prog. Org. Coat., 76(9) (2013) 1203-1214. https://doi.org/10.1016/j.porgcoat.2013.03.028

Wei Wang, ZhiQiang Cao. Sci. China-Technol. Sci. 59(12) (2016) 1968–1970. DOI: 10.1007/s11431-016-0800-4

Hamid Monfared, Farhad Sharif. Prog. Org. Coat., 63(1) (2008) 79-86. https://doi.org/10.1016/j.porgcoat.2008.04.010

Chang Li, Mehmet Atlar, Maryam Haroutunian, Colin Anderson, Serkan Turkmen. Ocean Eng., 159 (2018) 481-495. https://doi.org/10.1016/j.oceaneng.2018.01.042

Sanye Soroldoni, Fiamma Abreu, Ítalo Braga Castro, Fabio Andrei Duarte, Grasiela Lopes Leães Pinho. J. Hazard. Mater., 330 (2017) 76-82. https://doi.org/10.1016/j.jhazmat.2017.02.001

Carl-Fredrik Flach, Chandan Pal, Carl Johan Svensson, Erik Kristiansson, Marcus Östman, Johan Bengtsson-Palme, Mats Tysklind, D.G. Joakim Larsson. Sci. Total Environ., 590-591 (2017) 461-468. https://doi.org/10.1016/j.scitotenv.2017.01.213

Zhengang Yang, Wenping Liang, Qiang Miao, Bowen Chen, Zheng Ding, Nipon Roy. Mater. Res. Express. 5(4) (2018) 046408 https://doi.org/10.1088/2053-1591/aabab1

Shiyu Cui, Qiang Miao, Wenping Liang, Baiqiang Li. Appl. Surf. Sci., 428 (2018) 781-787. https://doi.org/10.1016/j.apsusc.2017.09.215

D.-B. Wei, H.-X. Liang, S.-Q. Li, F.-K. Li, F. Ding, S.-Y. Wang, Z.-L. Liu, P.-Z. Zhang. J. Min. Metall. Sect. B-Metall., 55 (2) B (2019) 227-234. DOI:10.2298/JMMB181031022D

Chen Xiaohu, Zhang Pingze, Wei Dongbo, Ding Feng, Li Fengkun, Wei Xxiangfei, Ma Shijian. Mater. Lett., 215 (2018) 292-295. https://doi.org/10.1016/j.matlet.2017.12.104

Song Xu, Paul Munroe, Jiang Xu, Zong-Han Xie. Surf. Coat. Technol., 307 (2016) 470-475. https://doi.org/10.1016/j.surfcoat.2016.09.015

Dazheng Zhang, Xiuhua Gao, Guanqiao Su, Linxiu Du, Zhenguang Liu, Jun Hu. J. Mater. Eng. Perform., 26(6) (2017) 2599-2607. DOI: 10.1007/s11665-017-2723-6

Mojtaba Bagherzadeh, Hedayat Haddadi, Maryam Iranpour. Prog. Org. Coat., 101 (2016) 149-160. https://doi.org/10.1016/j.porgcoat.2016.08.011

David de la Fuente, Ivan Díaz, J. Alcántara, B. Chico, J. Simancas, Irene Llorente, A. García‐Delgado, J. A. JimÉNEZ, Paloma Adeva, M. Morcillo. Mater. Corros., 67(3) (2016) 227-238. https://doi.org/10.1002/maco.201508488

J. Calero, J. Alcántara, B. Chico, Ivan Díaz, J. Simancas, David de la Fuente, M. Morcillo. Corros. Eng. Sci. Technol., 52(3) (2017)178-187. https://doi.org/10.1080/1478422X.2016.1244619

Haigang Xiao, Wei Ye, Xiaoping Song, Yuantai Ma, Ying Li. Materials., 10(11) (2017) 1262. DOI: 10.3390/ma10111262

D.de la Fuente, J. Alcántara, B. Chico, I. Díaz, J.A. Jiménez, M. Morcillo. Corrosion Sci., 110 (2016) 253-264. https://doi.org/10.1016/j.corsci.2016.04.034

X.Q. Liu, Zi-li Liu, J.D. Hu, Z.G. Hou, Qingchao Tian, H.Z. Wang. Anti-Corros. Methods Mater., 63(4) (2016) 281-288. DOI: 10.1108/ACMM-10-2014-1441

Qiufa Xu, Kewei Gao, Wenting Lv, Xiaolu Pang. Corrosion Sci., 102(2016) 114-124. https://doi.org/10.1016/j.corsci.2015.09.025

Heidis Cano, Ivan Díaz, David de la Fuente, B. Chico, M. Morcillo. Mater. Corros., 69(1) (2018) 8-19. DOI: 10.1002/maco.201709656

Li-Zhi Huang, Zhou Yin, Nicola G.A. Cooper, Weizhao Yin, Emil Tveden Bjerglund, Bjarne W. Strobel, Hans Christian B. Hansen. J. Hazard. Mater., 345 (2018)18-26. https://doi.org/10.1016/j.jhazmat.2017.11.011

Sun-Ah Park, Seon-Hong Kim, Yun-Ha Yoo, Jung-Gu Kim. Met. Mater.-Int., 21(3) (2015) 470-478. DOI: 10.1007/s12540-015-4421-y

S. Kožuh, L. Vrsalović, M. Gojić, S. Gudić, B. Kosec. J. Min. Metall. Sect. B-Metall., 52 (1) B (2016) 53-61. DOI:10.2298/JMMB150129003K

Qiong JIANG, Qiang MIAO, Fei TONG, Yi XU, Bei-lei REN, Zhi-mei LIU, Zheng-jun YAO. Acta., 115 (2014) 644-656. https://doi.org/10.1016/S1003-6326(14)63402-6

Hosni Ezuber, Abdulla Al Shater. Desalin. Water Treat., 57(15) (2015) 6670-6679. https://doi.org/10.1080/19443994.2015.1024743

Jie Wei, Junhua Dong, Yangtao Zhou, Xiaoyan He, Changgang Wang, Wei Ke. Mater. Charact., 139 (2018) 401-410. https://doi.org/10.1016/j.matchar.2018.03.021

Si-Yuan Lu, Ke-Fu Yao, Yun-Bo Chen, Miao-Hui Wang, Na Chen, Xue-Yuan Ge. Corrosion Sci., 103 (2016) 95-104. https://doi.org/10.1016/j.corsci.2015.11.010

R.M. Souto, L. Fernández-Mérida, S. González, D.J. Scantlebury. Corrosion Sci., 48(5) (2006) 1182-1192. https://doi.org/10.1016/j.corsci.2005.05.006

Daniel Mareci, Georgiana Bolat, Romeu Chelariu, Daniel Sutiman, Corneliu Munteanu. Mater. Chem. Phys., 141(1) (2013) 362-369. https://doi.org/10.1016/j.matchemphys.2013.05.024

Georgiana Bolat, Daniel Mareci, Sorin Iacoban, Nicanor Cimpoesu, Corneliu Munteanu. J. Spectrosc. (2013) 714920. http://dx.doi.org/10.1155/2013/714920 http://dx.doi.org/10.1155/2013/714920

Paul Gümpel, Arnulf Hoertnagl. Mater. Corros., 67(6) (2016) 607-620. DOI: 10.1002/maco.201608893

Carmelo José Felice, Gabriel Alfredo Ruiz. Chaos Solitons Fractals., 84 (2016) 81-87. DOI: 10.1016/j.chaos.2016.01.003

Jiayuan Hu, Shun-an Cao, Jianli Xie. Anti-Corros., Methods Mater. 60(2) (2013) 100-105. DOI: 10.1108/00035591311308074

XIE Jian-li, JIN Kai-feng, JIANG Xiao-bin, LU Jun-dong, HU Jia-yuan. Surface Technology., 43(2) (2014) 55-59 (in Chinese). DOI:10.16490/j.cnki.issn.1001-3660.2014.02.016

HU Jia-Yuan, CAO Shun-An, XIE Jian-Li. Acta Phys.-Chim. Sin., 28(5) (2012)1153-1162 (in Chinese). DOI: 10.3866/PKU.WHXB201203022

M. Stratmann, K. Hoffmann. Corrosion Sci., 29(11-12) (1989) 1329-1352. https://doi.org/10.1016/0010-938X(89)90123-6

Kim Seong-Jong, Jang Seok-Ki. Trans. Nonferrous Met. Soc. China., 19(s1) (2009) 50-55. https://doi.org/10.1016/S1003-6326(10)60244-0

Published
2020/09/15
How to Cite
Zhengang, Y., Wenping, L., Yanlin, J., Qiang, M., Zheng, D., & Yan, Q. (2020). Corrosion behavior of the copperized layer prepared by double glow plasma surface alloying technology in 3.5 wt.% NaCl solution. Journal of Mining and Metallurgy, Section B: Metallurgy, 56(2), 257-268. Retrieved from https://aseestant.ceon.rs/index.php/jmm/article/view/23703
Section
Original Scientific Paper