Sº and jarosite behavior during recovery of values from the direct leaching residue of sphalerite using cyanide and glycine

  • Nallely Guadalupe Picazo Universidad Autónoma de Coahuila
  • Francisco Raúl Carrillo Pedroza
  • Antonia Martínez Luévanos
  • Ma de Jesús Soria Aguilar
  • Isaías Almaguer Guzmán
Keywords: Gold, silver, treatments, jarosite, elemental sulfur.

Abstract


This paper reports the effect of the components of a direct leaching residue (jarosite and elemental sulfur), on the recovery of valuable metals such as gold and silver. Leaching media such as cyanide and mixtures of cyanide with glycine were used to recover the gold and silver from the residue; however, a low recovery of these metals was obtained. The above due to the negative effect of its components which cause problems in the extraction process such as encapsulation of silver (due to jarosite) and the formation of thiocyanate and re-precipitation of silver (due to sulfur). Various treatments prior to leaching were tested, finding that when the residue is desulfurized with perchlorethylene and subjected to an oxidizing alkaline hydrothermal treatment, the gold extraction increased from 39.73 to 88% and the silver extraction of 64.76 to 94.29%. Additionally, it was determined that when cyanide is assisted by glycine, the latter decreases its consumption during gold and silver leaching tests.

Author Biographies

Nallely Guadalupe Picazo, Universidad Autónoma de Coahuila
Facultad de Ciencias Químicas
Francisco Raúl Carrillo Pedroza

Faculty of Metallurgy, Phd

Antonia Martínez Luévanos

Faculty of Chemical Sciences, Phd

Ma de Jesús Soria Aguilar

Faculty of metallurgy

References

E. Dominic, Hydrometallurgy fundamentals, processes and applications. Institute of Mining Engineers of Chile, Chile, 2001, p. 267-313.

M. Mubarok, K. Sukamoto, Z. Ichlas, A. Sugiarto, Minerals & Metallurgical Processing., 35 (1) 136. DOI: 10.19150/mmp.8462.

P.E. Tsakiridis, P. Oustadakis, A. Katsiapi, S. Agatzini, Journal of Hazardous Materials., 179 (1-3) 9. doi:10.1016/j.jhazmat.2010.04.004.

J. Cháidez, Kinetic and thermodynamic study of the recovery of gold, silver and copper from sulphurous minerals [Dissertation], Technological Institute of Saltillo, 2018, p.62.

E. Jorjani, A. Ghahreman, Hydrometallurgy., 171 (2017) 334.

M. Erdem, A. Özverdi, Hydrometallurgy., 105 (2011) 270. doi:10.1016/j.hydromet.2010.10.014.

G. Jiang, B. Peng, Y. Liang, L. Chai, Q. Wang, Q. Li, M. Hu, Transactions of Nonferrous Metals Society of China., 27 (2017) 1180. DOI: 10.1016/S1003-6326(17)60138-9.

D. Calla, F. Nava, J. Fuentes, Journal of Hazardous Materials., 317 (2016) 440.

W. Kunda, H. Veltman, Metallurgical Transactions B., 10B (1979) 439.

H. Kaisani, K. Kasongo, N. Naude, J. Katabua, Minerals Engineering., 21 (2008) 1075. https://doi.org/10.1016/j.mineng.2007.12.005.

D. Calla, Waste treatment of the jarosite process of the zinc metallurgical industry, with the purpose of mitigating this environmental liability [Dissertation], National Engineering University, 2012, p.50.

A. González, F. Nava, J. Fuentes, A. Uribe, Journal of mining and metallurgy, Section B: Metallurgy., 52 (2016) 136. DOI:10.2298/JMMB150430016G.

E. Salinas, I. Rivera, F. Carrillo, F. Patiño, J. Hernández, L. Hernández, Rev. Soc. Quim. Mex., 48 (2004), 318.

C. Rodríguez, F. Nava, A. Uribe, J. Viñals, Hydrometallurgy., 164 (2016) 16.

Z. Liu, Z. Yin, H. Hu, Q. Chen, Trans. Nonferrous Met. Soc. China., 22 (2012) 2823. DOI: 10.1016/S1003-6326(11)61538-0.

W. Reed, A. Garnov, L. Rao, K. Nash, Separation Science and Technology., 40 (2005), 1033. doi:10.1081/ss-200049860.

J.J. Eksteen, E.A. Oraby, B.C. Tanda, Minerals Engineering., 108 (2017) 55.

https://doi.org/10.1016/j.mineng.2017.02.001

C. Perea, O. Restrepo, Hydrometallurgy., 177 (2016) 79-85. https://doi.org/10.1016/j.hydromet.2018.03.002

M. Lampinen, A. Laari, T. Ilkka, Hydrometallurgy., 153 (2015) 160-169. https://doi.org/10.1016/j.hydromet.2015.02.012

F. Habashi, Kinetics and mechanism of gold and silver dissolution in cyanide solutions. Montana College of Mineral Science and Technology, Montana, 1967.

G. Deschênes, C. Xia, M. Fulton, L. Cabri, J. Price, I. Alp, O. Celep, H. Deveci, Minerals Engineering., 22 (9-10) (2009), 800. https://doi.org/10.1016/j.mineng.2009.02.003

W. Liu, X. Fu, R. Shuai, T. Yang, D. Zhang, L. Chen, The Minerals, Metals & Materials Society., (2017) 490. DOI 10.1007/978-3-319-51382-9_53.

I. Alp, O. Celep, H. Deveci, The Journal of the Minerals, Metals & Materials Society., 62 (11) (2010) 42. DOI: 10.1007/s11837-010-0167-7.4

E. Elorza, J. García, V. García, XV Congress of Mineral Processing, 2010, San Luis Potosí, México, p.5.

K. Fraser, R. Walton, J. Wells, Minerals Engineering., 4 (1991) 1031.

J. Marsden, I. House, The Chemistry of Gold Extraction (2nd ed.). Society for Mining, Metallurgy, and Exploration, Inc, United States of America, 2005.

W. Yin, L. Huang, E. Bjerglund, C. Frandsen, H. Hansen, Journal of Colloid and Interface Science., 497 (2017), 431. http://dx.doi.org/10.1016/j.jcis.2016.11.076 0021-9797

E. Sminčáková, The Journal of the Minerals, Metals & Materials Society., 61 (10) (2009) 32. DOI: 10.1007/s11837-009-0149-9

K. Schönau, S. Redfern, Journal of Applied Physics., 92 (12) (2002) 7416.

R. Steudel, Elemental Sulfur and Sulfur-Rich Compounds I. Topics in Current Chemistry, Springer, Berlin, 2003.

Published
2021/11/18
How to Cite
Picazo, N. G., Carrillo Pedroza, F. R., Martínez Luévanos, A., Soria Aguilar, M. de J., & Almaguer Guzmán, I. (2021). Sº and jarosite behavior during recovery of values from the direct leaching residue of sphalerite using cyanide and glycine. Journal of Mining and Metallurgy, Section B: Metallurgy, 57(3), 349-358. Retrieved from https://aseestant.ceon.rs/index.php/jmm/article/view/24521
Section
Original Scientific Paper