Application of two-step diffusion couple technique in high-throughput screening of optimal composition and aging temperatures for alloys design: A demonstration in binary Ni-Al system

  • Yijing Shang Central South University
  • Dongjia Cao
  • Qin Li Central South University
  • Kun Yang National Engineering Laboratory for Modern Materials Surface Engineering Technology & The Key Lab of Guangdong for Modern Surface Engineering Technology
  • Chunming Deng National Engineering Laboratory for Modern Materials Surface Engineering Technology & The Key Lab of Guangdong for Modern Surface Engineering Technology
  • Lijun Zhang Central South University

Abstract


In this paper, three binary Ni-13.4 at.% Al/Ni-17.7 at.% Al diffusion couples were first prepared and subjected to homogenization at 1573 K for 18000 s, from which a continuous concentration profile forms. The three diffusion couples were then cooled down for aging at respective temperatures, i.e., 1173, 1123 and 1073 K, for 14400 s. The effect of composition and aging temperature on the aging microstructure was studied in detail by means of different experimental techniques and statistical analysis. The volume fraction, grain size and shape factor of γʹ precipitates in the three diffusion couples were plotted as a function of alloy composition and annealing temperatures. Together with the previously proposed evaluation function in which the phase fraction, grain size and shape factor of γʹ precipitates were chosen as the evaluation indicators, the optimal alloy composition and aging temperature for binary Ni-Al alloys with the best mechanical properties were evaluated, and finally validated by the measured hardness values. The successful demonstration of alloy design in the present binary Ni-Al alloys indicates that the two-step diffusion couple together with the evaluation function for mechanic properties should be of generality for high-throughput screening of optimal alloy composition and heat treatment process in different alloys.

Author Biography

Lijun Zhang, Central South University
Professor, State Key Laboratory of Powder Metallurgy

References

C.T. Sims, N.S. Stoloff, W.C. Hagel, Superalloys II: High-Temperature Materials for Aerospace and Industrial Power, second ed., Wiley-Blackwell New York, 1987.

T.M. Pollock, S. Tin, J. Propul. Power, 22(2) (2006) 361-347. https://doi.org/10.2514/1.18239.

M.M. Barjesteh, K. Zangeneh-Madar, S.M. Abbasi, K. Shirvani, J. Min. Metall. B, 55(2) (2019) 235-251. https://doi.org/10.2298/JMMB181214029B.

P. Jozwik, M. Kopec, W. Polkowski, Z. Bojar, J. Min. Metall. B, 55(1) (2019) 129-134. https://doi.org/10.2298/JMMB181113014J.

H. Long, S. Mao, Y. Liu, Z. Zhang, X. Han, J. Alloys Compd., 743 (2018) 203-220. https://doi.org/10.1016/j.jallcom.2018.01.224.

J.Y. Chen, B. Zhao, Q. Feng, L.M. Cao, Z.Q. Sun, Acta Metall. Sin., 46(8) (2010) 897-906. https://doi.org/10.3724/sp.j.1037.2010.00108.

B.C. Wilson, J.A. Hickman, G.E. Fuchs, JOM, 55(3) (2003) 35-40. https://doi.org/10.1007/s11837-003-0158-z.

Y.Y. Qiu, Acta Mater., 44(12) (1996) 1969-4980. https://doi.org/10.1016/S1359-6454(96)00128-0.

M.V. Nathal, Metall. Trans. A, 18(11) (1987) 1961-1970. https://doi.org/10.1007/BF02647026.

A.M. Ges, O. Fornaro, H.A. Palacio, Mater. Sci. Eng. A, 458(1-2) (2007) 96-100. https://doi.org/10.1016/j.msea.2006.12.107.

H. Fu, S.S. Li, Y.L. Pei, S.K. Gong, Mater. Sci. Forum, 816 (2015) 297-303. https://doi.org/10.4028/www.scientific.net/MSF.816.297.

Y. Lin, G. Li, M. Wei, J. Gao, L. Zhang, Metall. Mater. Trans. A, 50(10) (2019) 4920-4930. https://doi.org/10.1007/s11661-019-05400-z.

D.J. Cao, N. Ta, L.J. Zhang, Progress in Natural Science: Materials International, 27(6) (2017) 678-686. https://doi.org/10.1016/j.pnsc.2017.07.005.

N. Warnken, D. Ma, A. Drevermann, R.C. Reed, S.G. Fries, I. Steinbach, Acta Mater., 57(19) (2009) 5862-5875. https://doi.org/10.1016/j.actamat.2009.08.013.

N. Ta, L.J. Zhang, Y. Du, Metall. Mater. Trans. A, 45(4) (2014) 1787-1802. https://doi.org/10.1007/s11661-014-2192-6.

R. Shi, D.P. McAllister, N. Zhou, A.J. Detor, R. DiDomizio, M.J. Mills, Y. Wang, Acta Mater., 164 (2019) 220-236. https://doi.org/10.1016/j.actamat.2018.10.028.

Y.H. Wen, B. Wang, J.P. Simmons, Y. Wang, Acta Mater., 54(8) (2006) 2087-2099. https://doi.org/10.1016/j.actamat.2006.01.001.

J.C. Zhao, Chin. Sci. Bull., 59(15) (2014) 1652-1661. https://doi.org/10.1007/s11434-014-0120-1.

J.C. Zhao, M.R. Jackson, L.A. Peluso, L.N. Brewer, JOM, 54(7) (2002) 42-45. https://doi.org/10.1007/bf02700985.

J.C. Zhao, J. Mater. Res., 16(06) (2001) 1565-1578. https://doi.org/10.1557/jmr.2001.0218.

J.C. Zhao, Diagram Determination Using Diffusion Multiples, n: J.C. Zhao (Ed.), Methods for Phase Diagram Determination, Elsevier Science Ltd2007, pp. 246-272.

S. Cao, J.C. Zhao, J. Phase Equilib. Diffus., 37(1) (2015) 25-38. https://doi.org/10.1007/s11669-015-0423-1.

Q. Zhang, S.K. Makineni, J.E. Allison, J.C. Zhao, Scripta Mater., 160 (2019) 70-74. https://doi.org/10.1016/j.scriptamat.2018.09.048.

T. Miyazaki, T. Koyama, S. Kobayashi, Metall. Mater. Trans. A, 30(11) (1999) 2783-2789. https://doi.org/10.1007/s11661-999-0115-8.

T. Miyazaki, Prog. Mater. Sci., 57(6) (2012) 1010-1060. https://doi.org/10.1016/j.pmatsci.2011.11.002.

S. Mao, C. Wang, N. Li, J. Wang, Y. Chen, G. Xu, Y. Guo, Y. Cui, Calphad, 61 (2018) 219-226. https://doi.org/10.1016/j.calphad.2018.04.001.

Y. Shang, S. Yang, L. Zhang, Materialia, 8 (2019) 100500. https://doi.org/10.1016/j.mtla.2019.100500.

L.J. Zhang, Y. Du, Q. Chen, I. Steinbach, B.Y. Huang, Int. J. Mater. Res., 101(12) (2010) 1461-1475. https://doi.org/10.3139/146.110428.

W. Gust, M.B. Hintz, A. Loddwg, H. Odelius, B. Predel, Phys. Status Solidi A, 64(1) (1981) 187-194. https://doi.org/10.1002/pssa.2210640120.

D.H. Kirkwood, Acta Metall., 18(6) (1970) 563-570. https://doi.org/10.1016/0001-6160(70)90085-4.

Y.Y. Qiu, J. Alloys Compd., 232(1-2) (1996) 254-263. https://doi.org/10.1016/0925-8388(95)01914-6.

P. Cha, D. Yeon, S. Chung, Scripta Mater., 52(12) (2005) 1241-1245. https://doi.org/10.1016/j.scriptamat.2005.02.026.

T. Grosdidier, A. Hazotte, A. Simon, Mater. Sci. Eng. A, 26(1-2) (1998) 183-196. https://doi.org/10.1016/S0921-5093(98)00795-3.

A. Hazotte, T. Grosdidier, S. Denis, Scripta Mater., 34(4) (1996) 601-308. https://doi.org/10.1016/1359-6462(95)00554-4

F. Binczyk, J. Śleziona, A. Kościelna, Arch. Foundry Eng., 9(3) (2009) 13-16.

A.B. Kamara, A.J. Ardell, C.N.J. Wagner, Metall. Mater. Trans. A, 27(10) (1996) 2888-2896. https://doi.org/10.1007/BF02663837.

E.Y. Plotnikov, Z. Mao, R.D. Noebe, D.N. Seidman, Scripta Mater., 70 (2014) 51-54. https://doi.org/10.1016/j.scriptamat.2013.09.016.

Y.Y. Qiu, J. Alloys Compd., 270(1-2) (1998) 145-153. https://doi.org/10.1016/S0925-8388(98)00462-9.

J.S. Van Sluytman, T.M. Pollock, Acta Mater., 60(4) (2012) 1771-1783. https://doi.org/10.1016/j.actamat.2011.12.008.

M. Risbet, X. Feaugas, C. Guillemer-Neel, M. Clavel, Mater. Charact., 59(9) (2008) 1252-1257. https://doi.org/10.1016/j.matchar.2007.10.006.

Published
2021/09/03
How to Cite
Shang, Y., Cao, D., Li, Q., Yang, K., Deng, C., & Zhang, L. (2021). Application of two-step diffusion couple technique in high-throughput screening of optimal composition and aging temperatures for alloys design: A demonstration in binary Ni-Al system. Journal of Mining and Metallurgy, Section B: Metallurgy, 57(2), 175-184. Retrieved from https://aseestant.ceon.rs/index.php/jmm/article/view/24549
Section
Original Scientific Paper