Diffusion coefficients in multiphase Ni80Cr20-Ti system

  • Bartek Wierzba Rzeszow University of Techonolgy
  • Daria Serafin Rzeszow University of Technology
  • Wojciech J. Nowak Rzeszow University of Technology
  • Patrycja Wierzba Rzeszow University of Technology
  • Andrzej Ciećko BorgWarner Poland Sp. z o.o.
  • Aleksander Mazurkow Rzeszow University of Technology
Keywords: reaction diffusion, equilibrium, Ni80Cr20–Ti system

Abstract


In this paper, the reactive diffusion in Ni80C20r–Ti ternary system is discussed at 1173 K. The diffusion couple was prepared and annealed for 100 h. The two intermetallic phases and two two-phase zones occur, namely,Ti2Ni, TiNi, TiNi+Cr and TiNi3+Cr. Using the experimental results, the molar fractions and thicknesses of the intermetallic phases, the intrinsic diffusion coefficients in each phase were approximated. The Wagner method was used in the pure intermetallic phases. In the two phase zone the approximation was based on the generalized Darken method. The presented methods allowed for determination of the diffusion coefficients in each presented phase.

Author Biography

Andrzej Ciećko, BorgWarner Poland Sp. z o.o.

Department of Material and Metrology Laboratory, Rzeszzow Technical Center, 36-002 Jasionka 950A, Poland

References

1. B. Wierzba, W.S. Skibiński, J. Alloys Compd., 687 (2016) 104-108. https://doi.org/10.1016/j.jallcom.2016.06.085
2. J.S. Kirkaldy, L.S. Brown, Can. Metal. Q, 2 (1963) 89-117. https://doi.org/10.1179/cmq.1963.2.1.89
3. K.N. Kulkarni, B. Tryon, T.M. Pollock, M.A. Dayananda, J. Phase Equilib. Diffus., 28 (2007), 503-509. https://doi.org/10.1007/s11669-007-9199-2
4. M.A. Dayananda, Y.H. Sohn, Scripta Mater., 35 (1996) 638-688. https://doi.org/10.1016/1359-6462(96)00145-5
5. W. Chen, L. Zhang, Y. Du,C. Tang, B. Huang, Scripta Mater., 90 (2014) 53-56. https://doi.org/10.1016/j.scriptamat.2014.07.016
6. B. Wierzba, W.S. Skibiński, Physica A, 392 (2013) 4316-4324. https://doi.org/10.1016/j.physa.2013.05.055
7. C. Matano, Jpn J. Phys., 8 (1933) 109-113.
8. L.Boltzmann, Ann. Phys., 53 (1894) 959-964. https://doi.org/10.1002/andp.18942891315
9. F. Sauer, V. Freise, Z. Elektrochem., 66 (1962) 353-362. https://doi.org/10.1002/bbpc.19620660412
10. M. Zajusz, J. Dąbrowa, M. Danielewski, Scripta Mater., 138 (2017) 48-51. https://doi.org/10.1016/j.scriptamat.2017.05.031
11. M. Danielewski, B. Wierzba, Acta Mater., 58 (2010) 6717-6727. https://doi.org/10.1016/j.actamat.2010.08.037
12. B. Wierzba, Physica A, 454 (2016) 110-116. https://doi.org/10.1016/j.physa.2016.02.068
13. K.P. Gupta, J. Phase Equilib Diff., 24 (2003) 86-89. https://doi.org/10.1007/s11669-003-0019-z
14. H.H. Xu, Z.P. Zin, Scripta Mater., 37 (1997) 147-150. https://doi.org/10.1016/S1359-6462(97)00005-5
15. J. Huang, Y. Wang, J. Wang, X-G. Lu, L. Zhang, J. Phase Equilib Diff., 39 (2018) 597-609. https://doi.org/10.1007/s11669-018-0650-3
16. Y. Tan, H. Xu, Y. Du, Trans. Nonferrous Met. Soc., 17 (2007) 711-714. https://doi.org/10.1016/S1003-6326(07)60161-7
17. J.A. van Beek, A.A. Kodentsov, F.J.J. van Loo, J. Alloys Compd., 270 (1998) 218-223. https://doi.org/10.1016/S0925-8388(98)00505-2
18. B.J. Lee, Calphad, 16 (1992) 121-149. https://doi.org/10.1016/0364-5916(92)90002-F
19. C. Wagner, Acta Metall., 17 (1969) 99-107. https://doi.org/10.1016/0001-6160(69)90131-X
20. B. Wierzba, W.J. Nowak, Physica A, 509 (2018) 265-274. https://doi.org/10.1016/j.physa.2018.06.020
21. N. Zhu, J. Li, X-G. Lu, Y. He, J. Zhang, Metall. Mater. Trans. A, 46 (2015) 5444-5455. https://doi.org/10.1007/s11661-015-3114-y
Published
2021/02/28
How to Cite
Wierzba, B., Serafin, D., Nowak, W. J., Wierzba, P., Ciećko, A., & Mazurkow, A. (2021). Diffusion coefficients in multiphase Ni80Cr20-Ti system. Journal of Mining and Metallurgy, Section B: Metallurgy, 57(1), 137-144. Retrieved from https://aseestant.ceon.rs/index.php/jmm/article/view/25664
Section
Original Scientific Paper