Behavior of platinum in the system of the matte-slag in the processing of copper-nickel ores

  • Sergey Fedorov Institute of Metallurgy, Ural Branch of the Russian Academy of Sciences https://orcid.org/0000-0002-4201-5177
  • Alex Amdur Ural State Mining University
  • Valery Pavlov Ural State Mining University
  • Sergey Krasikov Ural State Mining University; Institute of Metallurgy, Ural Branch of the Russian Academy of Sciences
Keywords: platinum, intermetallide, matte, slag, surface tension, flotation

Abstract


Copper-nickel sulfide ores are one of the main sources of platinum. The processes for extracting precious metal from such ores involves melting of a concentrate in electric ore smelting furnaces, where the melt is divided into matte and slag. Platinum is generally concentrated in matte; however, some its part remains in the slag, thus leading to metal losses. In order to reduce platinum losses, the forms of platinum in these phases should be studied. It was found that during the heating and melting of this ore in reducing atmospheres, iron, nickel, and copper are reduced. The mineral composition of matte has been studied. Platinum in matte is present in the form of intermetallides with Fe and Ni. The PtFe intermetallide is a dispersed needle formation with a length of 20 to 500 µm and a thickness of up to 10 µm. The size effect is revealed: the content of impurities in the PtFe intermetallide increases with decreasing the thickness of needle formations. The increase in the content of impurities in dispersed needle formations of platinum can be explained by an increase in the thermodynamic activity of the dispersed substance and a corresponding increase in solubility. It was found that matte drops, together with the associated Pt, Fe, and Ni intermetallide particles of no more than 5-7 µm in size, were carried into the slag by gas bubbles using flotation. The conditions for the rise of a matte drop, together with a bubble in the slag, consist in the fact that the adhesive force of the drop with the bubble and the buoyancy force acting on the bubble must be greater than the gravity of the drop.

References

[1] Е.П. Янин, Научные и технические аспекты охраны окружающей среды, 5 (2008), 2–94 (E.P. Yanin, Scientific and technical aspects of environmental protection, 5 (2008), 2-94 (in Russian).
[2] B. O'Driscoll, J.M. Gonzalez-Jimenez, Reviews in Mineralogy and Geochemistry, 81 (1) B (2016), 489-578. https://doi.org/10.2138/rmg.2016.81.09.
[3] Г.В. Петров, А.Я. Бодуэн, И.И. Мардарь, Б.С. Иванов, А.С. Богинская, Успехи современного естествознания, 3 (2013), 145-148 (G.V. Petrov, A.Ya. Baudouin, I.I. Mardar, B.S. Ivanov, A.S. Boginskaya, Advances in modern natural sciences, 3 (2013), 145-148 (in Russian).
[4] I. Bellemans, E. De Wilde, N. Moelans, K. Verbeken, Adv Colloid Interface Sci., 255 (2018), 47-63. https://doi.org/10.1016/j.cis.2017.08.001.
[5] В.А. Макаров, В.Г. Михеев, П.Н. Самородский, Горный журнал, 3 (2016) 50-55 (V.A. Makarov, V.G. Mikheev, P.N. Samorodsky, Mountain Journal, 3 (2016) 50-55 (in Russian). https://doi.org/10.17580/gzh.2016.03.11.
[6] В.Н. Шамов, А.И. Юрьев, С.И. Матвеева, Н.А. Шабунина, Л.И. Алексеева, В.Д. Чегодаев, Цветные металлы, 9 (2006), 49-52 (V.N. Shamov, A.I. Yuriev, S.I. Matveeva, N.A. Shabunina, L.I. Alekseeva, V.D. Chegodaev, Non-ferrous metals, 9 (2006), 49-52 (in Russian).
[7] K. Avarmaa, H. Johto, P. Taskinen, Metallurgical and Materials Transactions B, 47 (1) B (2016), p 244–255. https://doi.org/10.1007/s11663-015-0498-4.
[8] K. Avarmaa, H. O'Brien, H. Johto, P. Taskinen, Journal of Sustainable Metallurgy 1 (3) B (2015), 216-228. https://doi.org/10.1007/s40831-015-0020-x.
[9] L.Sh. Tsemekhman, L.B. Tsymbulov, R.A. Pakhomov, V.A. Popov, Tsvetnye Metally, 11 (2016), p. 50-56. https://doi.org/10.17580/tsm.2016.11.05.
[10] P. Piskunen, K. Avarmaa, H. O'Brien, L. Klemettinen, H. Johto, P. Taskinen, Metallurgical and Materials Transactions B, 49 (1) B (2018), 98–122. https://doi.org/10.1007/s11663-017-1115-5.
[11] J. E. Mungall, J.M. Brenan, B. Godel, S.J. Barnes, F. Gaillard, Nature Geoscience, 8 (3), B (2015), 216-219. https://doi.org/10.1038/ngeo2373.
[12] Я.И. Гегузин, Пузыри, Наука, Москва, 1985, с. 176 (Y.E. Geguzin, Bubbles, Nauka, Moscow, 1985, p. 176 (in Russian).
[13] L.J. Cabri, C.E. Feather, Can. Mineral., 13 (1975), 117–126. URL: https://www.researchgate.net/profile/Louis_Cabri/publication/258210775_Platinum-iron_alloys_A_nomenclature_based_on_a_study_of_natural_and_synthetic_alloys/links/0c96052740087ceee6000000/Platinum-iron-alloys-A-nomenclature-based-on-a-study-of-natural-and-synthetic-alloys.pdf
[14] N.A. Vatolin, A.M. Amdur, V.V. Pavlov, S.A. Fedorov, A.N. Matushkina, Doklady Physical Chemistry, 470 (2), B (2016), 162-164. https://doi.org/10.1134/ S0012501616100067.
[15] HSC Chemistry for Windows. Chemical Reaction and Equilibrium Software withis extensive Thermochemical Database / Outotec Reseach Oy Information Servise, Finland. URL: www.outotec.com/hsc.
[16] В.Ф. Борбат, Металлургия платиновых металлов, Металлургия, Москва, 1987, с. 432 (V.F. Borbat, Metallurgy of platinum metals, Metallurgy, Moscow, 1987, p. 432 (in Russian).
[17] А.В. Ванюков, В.Я. Зайцев, Шлаки и штейны цветной металлургии, Металлургия, Москва, 1969, с. 408 (A.V. Vanyukov, V.Ya. Zaitsev, Slags and mattes of non-ferrous metallurgy, Metallurgy, Moscow, 1969, p. 408 (in Russian).
[18] Н.Г. Кайтмазова, Производство металлов за Полярным кругом, Антей лимитед, Норильск, 2007, c. 296 (N.G. Kaitmazova, Metal Production in the Arctic Circle, Antei Limited, Norilsk, 2007, p. 296(in Russian).
Published
2021/07/12
How to Cite
FedorovS., AmdurA., PavlovV., & KrasikovS. (2021). Behavior of platinum in the system of the matte-slag in the processing of copper-nickel ores. Journal of Mining and Metallurgy, Section B: Metallurgy, 57(2), 209-215. Retrieved from https://aseestant.ceon.rs/index.php/jmm/article/view/25671
Section
Original Scientific Paper