Influence of cooling rate on microstructure development of AlSi9MgMn alloy

  • Davor Stanić CIMOS – TCH Group P.P.C. Buzet Ltd
  • Zdenka Zovko Brodarac University of Zagreb Faculty of Metallurgy
Keywords: AlSi9MgMn alloy, thermal analysis, cooling rate, solidification sequence, microstructure development, mechanical properties

Abstract


Aluminum alloys are widely applied in automotive, aircraft, food and building industries. Multicomponent technical AlSi9MgMn alloy is primarily intended for high cooling rate technology. Controlled addition of alloying elements such as iron and manganese as well as magnesium can improve mechanical and technological properties of final casting in dependence from cooling conditions during solidification. High manganese content in AlSi9MgMn alloy together with high cooling rate enables evolution of intermetallic Al15(Mn,Fe)3Si2 phase in globular morphology resulting in enhanced mechanical properties.

The aim of this investigation is characterization of AlSi9MgMn alloy microstructure and mechanical properties at lower cooling rates than those for which this alloy was primarily developed. Thermodynamic calculation and thermal analyses revealed solidification sequence in correlation to microstructure investigation as follows: development of primary dendrite network, precipitation of high temperature Al15(Mn,Fe)3Si2 and Al5FeSi phases, main eutectic reaction, precipitation of intermetallic Al8Mg3FeSi6 phase and Mg2Si as a final solidifying phase. Correlation of microstructure features investigation and cooling rate reveals significant Al15(Mn,Fe)3Si2 morphology change from Chinese script morphology at low cooling rate, irregular broken Chinese script morphology at medium one and globular morphology at high cooling rate.

Author Biography

Zdenka Zovko Brodarac, University of Zagreb Faculty of Metallurgy
Department for process metallurgy

References

[1] F. Bonollo, N. Gramegna, G. Timelli, High-pressure die-casting: contradictions and challenges, JOM: Journal of the Minerals, Metals & Materials Society 67 (5) (2015) 901–908, DOI: 10.1007/s11837-015-1333-8
[2] F. Casarotto, A. J. Franke, R. Franke, Advanced Materials in Automotive Engineering, Woodhead Publishing Limited, (2012) 109-149, DOI: https://doi.org/10.1533/9780857095466.109
[3] Z. Zovko Brodarac, D. Stanić, Proceedings book of MATRIB 2014, Croatian Society for materials and tribology, Vela Luka, (2014) 637-646
[4] N. Dolić, Z. Zovko Brodarac, J. Min. Metall. Sect. B-Metall. 53 (3) B (2017) 429 – 439
[5] RHEINFELDEN, catalogue: SILAFONT 36 - AlSi9MgMn
[6] G. Barlock, L. F. Mondolfo, International Journal for Materials Research (Zeitschrift für Metallkunde), 66 (10) (1995) 605-611
[7] J. E. Tibballs, J. A. Horst, C. J. Simensen, Journal of Materials Science 36 (4) (2001) 937-941
[8] M. Warmuzek, K. Rabczak, J. Sieniawski, Journal of Materials Processing Technology 162–163 (2005) 422–428, DOI: https://doi.org/10.1016/j.jmatprotec.2005.02.030
[9] M. Warmuzek, J. Sieniawski, K. Wicher, G. Mrówka, Journal of Materials Processing Technology 175 (1-3) (2006) 421–426, DOI: https://doi.org/10.1016/j.jmatprotec.2005.04.005
[10] L. Backerund, G. Chai, J. Tamminen, Solidification Characteristics of Aluminium Alloys, Volume 2, Foundry Alloys, AFS/Skanaluminium, Stockhlom, 1999.
[11] M. V. Kral, Mater. Lett., 59 (18) (2005) 2271–2276, DOI: https://doi.org/10.1016/j.matlet.2004.05.091
[12] M. Tash, F. H. Samuel, F. Mucciardi, Mater. Sci. Eng. A, 443 (1-2) (2007), 185–201, DOI: https://doi.org/10.1016/j.msea.2006.08.054
[13] S. Belmares-Perales, M. Castro-Román, M. Herrera-Trejo, L. E. Ramírez-Vidaurri, Metals and Materials International, 14 (3) (2008) 307-314, DOI: 10.3365/met.mat.2008.06.307
[14] A. Couture, International Cast Metals Journal, 6 (4) (1981) 9-17
[15] P. N. Crepeau, AFS Transactions, 103 (1995), 361-366.
[16] C. M. Dinnis, J. A. Taylor, A. K. Dahle, Scripta Mater., 53 (8) (2005), 955–958, DOI: https://doi.org/10.1016/j.scriptamat.2005.06.028
[17] Z. Zovko Brodarac, D. Stanić, 71st World Foundry Congress: Advanced Sustainable Foundry; World Foundry Organization, Bilbao, 2014, 1223-1227
[18] U. Büyük, S. Engin, N. Maraşli, J. Min. Metall. Sect. B-Metall, 51 (1) B (2015) 67 - 72
[19] Z. Zovko Brodarac, N. Dolić, F. Unkić, J. Min. Metall. Sect. B-Metall, 50 (1) B (2014) 53-60.
[20] Z. Zovko Brodarac, F. Unkić, J. Medved, P. Mrvar, Kovove Mater, 50 (1) (2012) 59–67, DOI: https://doi.org/10.4149/km_2012_1_59
[21] Z. Zovko Brodarac, T. Holjevac Grgurić, J. Burja, J Therm Anal Calorim 127 (2017) 431–438, DOI: https://doi.org/10.1007/s10973-016-5746-6
[22] Z. Zovko Brodarac, D. Stanić, F. Unkić, Livarski vestnik, 60 (4) (2013) 201-215
[23] R. Liu, J. Zheng, L. Godlewski, J. Zindel, M. Li, W. Li, S. Huang, Materials Science & Engineering A, 783 (2020), DOI: doi.org/10.1016/j.msea.2020.139280.
[24] Z. Zovko Brodarac, D. Stanić, Livarski vestnik, 62 (4) (2015) 195-208
[25] Q. Cai, C. L. Mendis, I.T.H. Chang, Z. Fan, Materials and Design, 187 (2020), DOI: doi.org/10.1016/j.matdes.2019.108394
[26] M. Vončina, J. Medved, S. Kores, P. Xiec, P. Schumacher, J. Li, Materials Characterization 155 (2019), DOI: doi.org/10.1016/j.matchar.2019.109820
[27] Z. Zovko Brodarac, P. Mrvar, J. Medved, P. Fajfar, Metalurgija, 46 (1) (2007), 29-35
[28] Z. Zovko Brodarac, D. Stanić, Book of Abstracts of the 5th Central and Eastern Conference on Thermal Analysis and Calorimetry (CEEC-TAC5) and 14th Mediterranean Conference on Calorimetry and Thermal Analysis (Medicta2019), Central and Eastern Commitee on Thermal Analysis and Calorimetry, Roma, 2019, p.143
[29] M. Vončina, S. Kores, M. Ernecl, J. Medved, J. Min. Metall. Sect. B-Metall. 53 (3) B (2017) 423 – 428
[30] B. Jordović, B. Nedeljković, N. Mitrović*, J. Živanić, A. Maričić, J. Min. Metall. Sect. B-Metall. 50 (2) B (2014) 133 – 137
[31] EN 10002-1:1998 Metallic materials – Tensile testing – Part 1: Method of test (at ambient temperature)
Published
2020/12/30
How to Cite
Stanić, D., & Zovko Brodarac, Z. (2020). Influence of cooling rate on microstructure development of AlSi9MgMn alloy. Journal of Mining and Metallurgy, Section B: Metallurgy, 56(3), 405-413. Retrieved from https://aseestant.ceon.rs/index.php/jmm/article/view/26400
Section
TPTPMIAC2019