Simulation and analysis of the solidification characteristics of a Si-Mo ductile iron

  • Gulsah Aktas Celik Kocaeli University
  • Maria-Ioanna T. Tzini University of Thessaly, Department of Mechanical Engineering, Laboratory of Materials
  • Şeyda Polat Kocaeli University, Department of Metallurgical and Materials Engineering
  • John S. Aristeidakis University of Thessaly, Department of Mechanical Engineering, Laboratory of Materials
  • Şaban Hakan Atapek Kocaeli University, Department of Metallurgical and Materials Engineering
  • Panagiota I. Sarafoglou University of Thessaly, Department of Mechanical Engineering, Laboratory of Materials
  • Gregory N. Haidemenopoulos University of Thessaly, Department of Mechanical Engineering, Laboratory of Materials - Khalifa University of Science and Technology, Department of Mechanical Engineering, UAE
Keywords: Si-Mo cast iron, Thermo-Calc, solidification, microstructural characterization.

Abstract


High silicon and molybdenum ductile cast irons (Si-Mo alloys) are commonly used as exhaust manifold materials suffering from high temperature-oxidation and thermal-mechanical fatigue. The structural integrity of cast Si-Mo alloys under these service conditions is attributed to their microstructure consisting of spheroidal graphite and Mo-rich carbide embedded in a ferritic matrix. However, the cast structure includes also pearlite structure having a detrimental effect on the mechanical properties, therefore the cast matrix needs to be heat treated. In this study, the solidification of a Si-Mo ductile iron was investigated using (i) thermodynamic and kinetic calculations by Thermo-Calc and DICTRA software and (ii) thermal analysis in order to reveal out the sequence of phase formation and the phase transformations during solidification and (iii) microanalysis by energy dispersive spectrometer in order to determine elemental segregation and compare with the calculated values. The solidified structure was also characterized and all microstructural features were specified.

Author Biography

Gulsah Aktas Celik, Kocaeli University
Turkey

References

[1] Y.H. Zhang, M. Li, L.A. Godlewski, J.W. Zindel, and Q. Feng, Mater. Sci. Eng. A 683 (2017) 195-206.
[2] J.P. Shingledecker, P.J. Maziasz, N.D. Evans, and M.J. Pollard, Int. J. Press. Vessels Pip., 84 (2007) 21-28.
[3] H-J. Kühn, B. Rehmer, and B. Skrotzki, Int. J. Fatigue, 99 (2017) 295-302.
[4] K. Dawi, J. Favergeon, and G. Moulin, Mater. Sci. Forum, 595-598 (2008) 743-751.
[5] M. Ekström, Thibblin A., Tjemberg A., C. Blomqvist, and S. Jonsson, Surf. Coat. Technol., 272 (2015) 198-212.
[6] M. Ekström, and S. Jonsson, Mater. Sci. Eng., A, 616 (2014) 78-87.
[7] H. Kazdal Zeytin, C. Kubilay, H. Aydın, A.A. Ebrinc, and B. Aydemir, J. Iron. Steel Res. Int., 16 (2009) 32-36.
[8] M.P. Brady, G. Muralidharan, D.N. Leonard, J.A. Haynes, R.G. Weldon, and R.D. England, Oxid. Met., 82 (2014) 359-381.
[9] K.A. Unocic, S. Dryepondt, Y. Yamamoto, and P.J. Maziasz, Cu, Ni and Cr, Metall. Mater. Trans. A, 47(4) (2016) 1641-1653.
[10] L.M. Aberg, and C. Hartung, Trans. Indian Inst. Met., 65(6) 2012 633-636.
[11] S. Delprete, Experimental Characterization of Si-Mo-Cr Ductile Cast Iron, Mater. Des., 57 (2014) 528-537.
[12] Y.L. Yang, Z.Y. Cao, Z.S. Lian, and H.X. Yu, J. Iron. Steel Res. Int., International, 20 (2013) 52-57.
[13] M.M. Ibrahim, A. Nofal, and M.M. Mourad, Metall. Mater. Trans. B, 48 (2017) 1149-1157.
[14] P. Matteis, G. Scavino, A. Castello, and D. Firrao, Procedia Mater. Sci., 3 (2014) 2154-2159.
[15] Y.L. Yang, Z.Y. Cao, Y. Qi, and B. Liu, Adv. Mater. Res., 97(101) (2010) 530-533.
[16] G.S. Cho, K.H. Choe, K.W. Lee, and A. Ikenaga, J. Mater. Sci. Technol., 23 (2007) 97-101.
[17] A. Alhussein, M. Risbet, A. Bastien, J.P. Chobaut, D. Balloy, and J. Favergeon, Mater. Sci. Eng., A, 605 (2014) 222-228.
[18] J. Lacaze, Acta Mater., 47(14) (1999) 3779-3792.
[19] ThermoCalc Software System, Foundation of Computational Thermodynamics, Copyright © 1995-2013 Foundation of Computational Thermodynamic, Stockholm, Sweden, (2006).
[20] G.N. Haidemenopoulos, doi 10.13140/RG.2.1.3004.0163, unpublished research.
[21] J.S. Aristeidakis, and G.N. Haidemenopoulos, Metall. Mater. Trans. A, 48(5) (2017) 2584-2602.
[22] G.F. Samaras, and G.N. Haidemenopoulos, Eng. Fail. Anal. 51 (2015) 29-36.
[23] H. Larsson, and L. Höglund, CALPHAD: Computer Coupling of Phase Diagrams and Thermochemistry, 33 (2009) 495-50.
Published
2021/02/28
How to Cite
Aktas Celik, G., Tzini, M.-I. T., Polat, Şeyda, Aristeidakis, J. S., Atapek, Şaban H., Sarafoglou, P. I., & Haidemenopoulos, G. N. (2021). Simulation and analysis of the solidification characteristics of a Si-Mo ductile iron. Journal of Mining and Metallurgy, Section B: Metallurgy, 57(1), 53-62. Retrieved from https://aseestant.ceon.rs/index.php/jmm/article/view/27567
Section
Original Scientific Paper