The influence of morphology and crystal orientation of spangles on hot-dip Zn-0.5Sn alloy coating

  • Lei Zhai Jiangsu Key Laboratory of Oil & Gas Storage and Transportation Technology, Changzhou University, 213164, Jiangsu, P.R. China
  • Haoping Peng Changzhou University
  • Ya Liu 1 Jiangsu Key Laboratory of Material surface Science and technology, Changzhou University, 213164, Jiangsu, P.R. China
  • Yun Lei Jiangsu Key Laboratory of Oil & Gas Storage and Transportation Technology, Changzhou University, 213164, Jiangsu, P.R. China
  • Song Deng Jiangsu Key Laboratory of Oil & Gas Storage and Transportation Technology, Changzhou University, 213164, Jiangsu, P.R. China
  • Xuping Su Jiangsu Collaborative Innovation Center of Photovoltaic Science and Engineering, Changzhou University, 213164, Jiangsu, P.R. China
Keywords: hot-dip galvanizing, spangle, crystal orientation, backscattered electron diffraction

Abstract


By studying the surface morphology and crystal orientation of the Zn-0.5Sn coating, it guides improving the surface performance of the hot-dip galvanizing coating. Scanning electron microscope (SEM) and energy dispersive spectrometer (EDS) were used to analyze the typical morphology and element distribution of spangles. The surface texture of the coating was analyzed by X-ray diffraction (XRD). Electron backscatter diffraction (EBSD) was used to analyze the crystal orientation of spangles. The results show that Sn segregates among the spangle dendrites, and the tin-rich phase exists in the form of a metastable divorced eutectic structure. The components of the tin-rich phase are similar. The crystal orientation of spangle affects the morphology of spangle, leading to the formation of feathery, ridged, and orthogonal dendrite arm spangle. When the angle between the <0001> orientation of the spangle crystal and the normal of the steel base surface changes from 0° to 90°, the spangle morphology evolves from feathery to orthogonal dendrite arm. The misorientation within a spangle is small while between spangles is quite large. The misorientation along the direction of the dendrite arm is relatively smooth and slow, while perpendicular to the direction of the dendrite arm presents a jumping and irregular fluctuation.

References

[1] Vourlias G, Pistofidis N, Stergioudis G, et al., Physica Status Solidi(a), 201 (7) (2004) 1518-1527.
[2] Vourlias G, Pistofidis N, Stergioudis G, et al., Crystal Research and Technology, 39 (1) (2004) 23-29.
[3] Fasoyinu FA, Weinberg F, Metallurgical Transactions B, 21 (3) (1990) 549-558.
[4] M. Godzsák, G. Lévai, Vad K , et al., Journal of Mining and Metallurgy Section B: Metallurgy, 53 (2017) 28-28.
[5] Strutzenberger J, Faderl J., Metallurgical and Materials Transactions A (Physical Metallurgy and, Materials Science), 29 (2) (1998) 631-646.
[6] Sémoroz A, Strezov L, Rappaz M., Metallurgical and Materials Transactions A (Physical Metallurgy and, Materials Science), 33 (8) (2002) 2685-2694.
[7] Sémoroz A, Strezov L, Rappaz M., Metallurgical and Materials Transactions A (Physical Metallurgy and, Materials Science), 33 (8) (2002) 2695-2701.
[8] Zapponi M, Quiroga A, Pérez T., Surface and Coatings Technology, 122 (1) (1999) 18-20.
[9] Sémoroz A, Durandet Y, Rappaz M., Acta Materialia, 49 (3) (2001) 529-541.
[10] Jintang L, Xinhua W, Chunshan C, et al., Transactions of Nonferrous Metals Society of China, 17 (2) (2007) 351-356.
[11] Jintang L, Xinhua W, Chunshan C., Surface and Interface Analysis, 39 (10) (2007) 805-808.
[12] Chen RY, Yuen D., Metallurgical and Materials Transactions A, 43 (12) (2012) 4711-4723.
[13] Asgari H, Toroghinejad MR, Golozar MA., Journal of Materials Processing Technology, 198 (1-3) (2008) 54-59.
[14] Shu P, Jintang L, Chunshan C, et al., Applied Surface Science, 256 (16) (2010) 5015-5020.
[15] Shu P, Shikun X, Jintang L, et al., Journal of Alloys and Compounds, 728 (2017) 1002-1008.
[16] Shu P, Shikun X, Fen X, et al., Corrosion Science, (2019) 108237.
[17] Quiroga A, Claessens S, Gay B, et al., Metallurgical and Materials Transactions A, 35 (11) (2004) 3543-3550.
[18] Seré PR, Culcasi JD, Elsner CI, et al., Surface and Coatings Technology, 122 (2-3) (1999) 143-149.
[19] Moser Z , Dutkiewicz J , Gasior W , et al., Journal of Phase Equilibria, 6 (4) (1985) 330-334.
[20] Wu C M L , Law C M T , Yu D Q , et al., Journal of Electronic Materials, 32 (2) (2003) 63-69.
[21] Garcia L R , Wislei R. Osório, Peixoto L C , et al., Journal of Electronic Materials, 38 (11) (2009) 2405-2414.
[22] Wataya T , Yoshikawa M , Tanaka T , et al., Journal of the Japan Institute of Metals, 67 (11) (2003) 643-646.
[23] Sun, M., Yang, Y., Luo, M. et al., Acta Metall. Sin. (Engl. Lett.), 28 (2015) 1183-1189.
[24] Cheng P., Dai N., Zhong N., et al., Corrosion Engineering, Science and Technology, 55 (2020) 232-240.
[25] R.E. Fraley, MS Thesis, Lehigh University, USA, 1994.
[26] Nayar P K K , Scripta Metallurgica, 13 (12) (1979) 1115-1116.
[27] R. Lück, Hering E , Scripta Metallurgica, 2 (11) (1968) 625-628.
[28] Behm TH, Funke C, Möller HJ, Surface and Interface Analysis, 45 (4) (2013) 781-786.
[29] Zagonel LF, Barrett N, Renault O, et al., Surface and Interface Analysis, 40 (13) (2008) 1709-1712.
[30] Park NJ, Jin SJ, Jea CW, et al., Solid State Phenomena, 105 (2005) 213-218.
[31] Ivanova TM, Serebryanyi VN, Inorganic Materials, 54 (15) 2019 1477-1482.
Published
2021/02/28
How to Cite
Zhai, L., Peng, H., Liu, Y., Lei, Y., Deng, S., & Su, X. (2021). The influence of morphology and crystal orientation of spangles on hot-dip Zn-0.5Sn alloy coating. Journal of Mining and Metallurgy, Section B: Metallurgy, 57(1), 63-72. Retrieved from https://aseestant.ceon.rs/index.php/jmm/article/view/27678
Section
Original Scientific Paper